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Abstract

Adverse childhood experiences (ACEs) put millions of children at risk for later health

problems. As childhood represents a critical developmental period, it is important

to understand how ACEs impact brain development in young children. In addition,

children with attention-deficit/hyperactivity disorder (ADHD) are more likely than

typically developing (TD) peers to experience ACEs. Therefore, the current study

examined the impact of ACEs on early brain development, using a cumulative risk

approach, in a large sample of children with and without ADHD. We examined 198

young children (Mage = 5.45, 82.3% Hispanic/Latino; 52.5% ADHD) across measures

of brain volume, cortical thickness, neurite density index (NDI), and orientation dis-

persion index (ODI). For the NDI measure, there was a significant interaction between

group and cumulative risk (ß = .18, p = .048), such that for children with ADHD, but

not TD children, greater cumulate risk was associated with increased NDI in corpus

callosum. No other interactions were detected. Additionally, when examining across

groups, greater cumulative risk was associated with reduced ODI and volume in the

cerebellum, although these findings did not survive a correction for multiple compar-

isons. Our results highlight the role early cumulative ACEs play in brain development

across TD and children with ADHD.
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1 INTRODUCTION

Adevelopmental psychopathologyperspective advocates for (1) study-

ing the full range of variation from normality to psychopathology, (2)

understanding origins and mechanisms underlying psychopathology,

and (3) use of multiple units and levels of analysis to study salient

domains of functioning (Garber & Bradshaw, 2020; Miklosi, Mate, &

Balazs, 2020). In the context of this conceptual approach, we exam-

ine the effects of cumulative adverse childhood experiences (ACEs)

on structural brain development in typically developing (TD) and at-

risk youth (i.e., children with attention-deficit/hyperactivity disorder

[ADHD]). Each year, ACEs put millions of children at risk for health

problems (e.g., heart disease, obesity), psychological illness (e.g., alco-

holism, depression, suicide), and even early death (Brown et al., 2009;

Dube et al., 2002;McLaughlin et al., 2012). Typically, ACEs are explored

in isolation, even though many of these risk factors co-occur and are

cumulative (McLaughlin et al., 2010). Such co-occurring exogenous

factors—low family income, parental psychopathology, stress—interact

with endogenous characteristics of the child, such as their own psy-

chopathology. Examining these factors within a cumulative risk model

is thus most appropriate for understanding how ACEs affect brain

development during early childhood, in which the brain is especially
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vulnerable to early experiences (Fox, Levitt, & Nelson, 2010). Despite

this, most of the literature examining ACEs’ impact on brain develop-

ment has been conducted with older, restricted samples that do not

consider comorbid risk factors such as developmental disorders. This is

especially problematic for common disorders appearing in early child-

hood, likeADHD, as such children are at increased risk for experiencing

ACEs (Walker et al., 2020). Furthermore, the impact of ACEs on brain

development may be exacerbated relative to TD children. Thus, the

current study looks to fill these gaps by examining the impact of ACEs

on early brain development, using a cumulative risk approach, in a large

sample of young children with and without ADHD. In line with previ-

ous research, the current study will focus on seven ACEs: low family

income and parental education (socioeconomic disadvantage), single-

parent household status (family structure), and parental factors such

asminority status, ADHD, stress, and emotion regulation (parental risk

characteristics).

It is important to understand the impact of ACEs across a spec-

trum of presentations by studying the range of variation from normal-

ity to psychopathology. ACEs can lead topervasive negative health out-

comes that continue throughout adulthood (Mäntymaa et al., 2012;

McLanahan, Tach, & Schneider, 2013). For example, children in single-

parent homes are at an increased risk for decreased cognitive function-

ing andacademicperformance (Amato&Anthony, 2014;Brown, 2010),

with increased risk for later obesity, mental health problems, antiso-

cial behavior, and substance use (Duriancik & Goff, 2019; McLanahan

et al., 2013). These risks are heightened in childrenwith ADHD, as they

aremore likely to experiencemultiple ACEs such as socioeconomic dis-

advantage (Msall et al., 1998), low parental education (Law, Sideridis,

Prock, & Sheridan, 2014; Machlin, McLaughlin, & Sheridan, 2020),

parental divorce (Schermerhorn et al., 2012;Wymbs et al., 2008), high

parental stress (Craig et al., 2016; Ronald, Pennell, & Whitehouse,

2011; Theule, Wiener, Tannock, & Jenkins, 2013), and parent psy-

chopathology (Chronis et al., 2003; Vidair et al., 2011). Understanding

the impact of cumulative ACEs across presentations (i.e., TD to ADHD)

in early childhood can illuminate pathways of risk and resilience.

In addition to well-studied mental health outcomes, a number of

studies have shown that ACEs are associatedwith neurobiological out-

comes, specifically in gray matter brain regions and the white matter

connectivity supporting these networks. Most studies have focused on

graymatter volume and cortical thickness differences in the limbic sys-

tem as a result of various ACEs. For example, ACEs have been associ-

atedwith reductions in volumeand thickness in the hippocampus, amyg-

dala, anterior cingulate cortex, and orbitofrontal cortex (OFC), in addition

to other cortical regions associated with limbic functions (Chad-

Friedman et al., 2020; Duan, Hare, Staring, & Deligiannidis, 2019;

Hanson, Chandra,Wolfe, & Pollak, 2011; Lawson, Duda, Avants,Wu, &

Farah, 2013;Machlin et al., 2020;Marečková et al., 2019;Noble, Hous-

ton, Kan, & Sowell, 2012; see Figure 1). Research in TD children has

also shown reductions in volume of the cerebellum (Jackowski et al.,

2008), and reduced cerebellar volume is a reliable finding in children

with ADHD (Rubia, 2018). Indeed, the few studies examining ACEs in

children with ADHD have also found that more ACEs were associated

with reduced cerebellar volume, in addition to reductions in subcor-

tical limbic regions (i.e., amygdala and hippocampus; Machlin et al.,

2020).

Maturation of white matter in the brain is also susceptible to influ-

ence from early exposure to ACEs. This is not surprising, given the pro-

tracted developmental timeline of myelination of axons in early child-

hood through adolescence (Giedd et al., 1999). Several studies have

shown reductions in volume or diffusion properties of the corpus callo-

sum (Jackowski et al., 2008;McCarthy-Jones et al., 2018; Rinne-Albers

et al., 2016). These changes persist into adulthood, suggesting pro-

longed negative impacts of early ACEs on brain development.

Information about gross gray matter and white matter changes are

informative, but they do not provide information about subtle changes

in local neural connections and structure. More recent methods, such

as neurite orientation dispersion and density imaging (NODDI), have

been developed to take advantage of the complex signal available

in diffusion-weighted images (Zhang, Schneider, Wheeler-Kingshott,

& Alexander, 2012). The neurite density index (NDI) recovered from

NODDI reconstruction can provide detailed information about how

the cytoarchitecture of neurons changes in response to exposure to

ACEs, specifically measuring the potential loss or maintenance of neu-

rons. The advantage of this metric is that it can be used to investi-

gate changes in both gray matter (primarily neurons) and white mat-

ter (primarily axons). Similarly, the orientation dispersion index (ODI)

is sensitive to reduction or maintenance of the complexity of dendritic

arborization. These indices can potentially provide information about

changes in local neural organization in response to specific experi-

ences, leading to amore comprehensive picture of the neural response

to ACEs.

1.1 The current study

Although individual ACEs have been shown to impact later brain devel-

opment (Chad-Friedman et al., 2020; Hair, Hanson, Wolfe, & Pollak,

2015), there is extremely limited research examining how cumulative

risk factors impact brain development as early as preschool (Hawkey,

Tillman, Luby, & Barch, 2018). While some studies have included only

younger children (e.g., Luby et al., 2013), most include a large age range

of children at different stages of brain development (e.g., children aged

3–21). Further, as children with ADHD are at an increased risk for

experiencing these aforementioned ACEs, it is extremely important to

understand if ACEs differentially impact brain development in children

with ADHD. The current study looked to fill these gaps by examining

how ACEs, utilizing a cumulative risk approach, are associated with

brain development in young children with and without ADHD. More-

over, the current study tested if the impact of cumulative risk is exacer-

bated in childrenwithADHDcompared toTD. The current study aimed

to establish this comprehensive picture by examining volumetric, corti-

cal thickness, NDI, andODI differences in response to ACEs.

We hypothesized that cumulative risk would be negatively associ-

ated with children’s volume within the cerebellum, corpus collosum,
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F IGURE 1 Cortical and subcortical regions of interest. This figure shows all regions of interest examined, including the orbital frontal cortex
(OFC), anterior cingulate, corpus collosum (cortical regions), amygdala, hippocampus, and the cerebellum (subcortical regions)

the OFC, amygdala, hippocampus, and the anterior cingulate. We

also hypothesized that cumulative risk would be negatively associ-

ated with cortical thickness in the OFC and cingulate. Given the lim-

ited studies on NDI and ODI within young children, we hypothe-

sized that if cumulative risk interferes with synaptic formation, then

a negative association with measures of NDI and a positive associ-

ation with measures of ODI would be found. We expected to find

these associations acrossTDchildren and thosediagnosedwithADHD,

althoughwe expected that childrenwith ADHDwould have higher risk

scores.

2 METHODS AND MATERIALS

2.1 Participants and recruitment

Children and their caregivers were recruited from local schools and

mental health agencies via brochures, radio and newspaper ads, and

open houses/parent workshops. All children were required to be

enrolled in school during the previous year, have an estimated IQ of

70 or higher, and have no confirmed history of an autism spectrum

disorder.

For the ADHD sample, ADHD diagnosis and comorbid disruptive

behavior disorders were assessed through a combination of parent

structured interview (Computerized-Diagnostic Interview Schedule

for Children [C-DISC]; Shaffer, Fisher, Lucas, Dulcan, & Schwab-Stone,

2000), and parent and teacher ratings of symptoms and impairment

(Disruptive Behavior Disorders Rating Scale, Impairment Rating Scale;

Fabiano et al., 2006; Pelham, Gnagy, Greenslade, & Milich, 1992), as

is recommended by standard practice (Pelham, Fabiano, & Massetti,

2005). Dual Ph.D. level clinician review was used to determine diagno-

sis and eligibility. For the TD sample, parents must have endorsed less

than four ADHD symptoms (across either inattention or hyperactivity/

impulsivity according to the DSM-5), less than four oppositional defi-

ant disorder (ODD) symptoms, and indicated no clinically signifi-

cant impairment (score below 3 on the impairment rating scale). The

final sample included 198 young children (70.7% male; Mage = 5.45,

SD = 0.89, 82.3% Hispanic/Latino) with an equivalent distribution of
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children diagnosed with ADHD (52.5%) and those characterized as TD

(47.5%).

This study was approved by the university’s Institutional Review

Board. All families participated in a one-time assessment, which

included completion of the ADHD, ODD, and conduct disorder mod-

ules on the C-DISC and various questionnaires regarding their chil-

dren’s behavioral, academic, and emotional functioning. Similar ques-

tionnaires were also obtained from children’s teachers. Children also

completed a 25-minMRI scan.

2.2 Risk measures

2.2.1 Parental stress

The Parenting Stress Index-Short Form (PSI-SF; Abidin, 1995) is a

36-item self-report scale that measures stress in the parent–child

relationship due to parent distress, difficult child behavior, and dys-

functional parent–child interaction. For the purposes of this study,

the parental distress scale was used as a measure of parental stress

(Cronbach’s a= .79).

2.2.2 Parental ADHD

The ADHD Self-Report Scale (ASRS; Kessler et al., 2005) is an 18-item

self-report measure to assess manifestation of ADHD symptoms in

people aged 18 years or older. The ASRS has previously demonstrated

good internal consistency and concurrent validity (Adler et al., 2006).

The total score was used in this study (Cronbach’s a= .89).

2.2.3 Parental emotion regulation

The Difficulties in Emotion Regulation Scale-Short Form (DERS-SF;

Kaufman et al., 2016; Victor & Klonsky, 2016) is an 18-item self-report

measure that assesses the presence and frequency of symptoms of

emotion dysregulation in adults. Responders are asked to rate the fre-

quency at which they experience particular symptoms. The total score

was used in this study with higher scores indicatingmore emotion dys-

regulation problems (Cronbach’s a= .80).

2.2.4 Cumulative risk index

Consistent with prior work (Appleyard, Egeland, van Dulmen, &

Alan Sroufe, 2005; Bagner & Graziano, 2013), we transformed seven

variables into dichotomous variables, with a score of 1 = the presence

of risk and 0 = no risk. The risk variables included (1) low family

income, (2) parental education, (3) single-parent household status, (4)

parentalminority status, (5) parental ADHD, (6) parental stress, and (7)

parental emotion regulation. Cumulative risk was calculated for each

participant by summing the seven dichotomized variables (possible

range in scores from 0 to 7), with higher scores indicating greater risk.

See Table 1 for details on how risk scores were determined for each

variable.

2.3 Image acquisition and processing

2.3.1 MRI acquisition and processing

All imaging was performed using a research-dedicated 3-T Siemens

MAGNETOM Prisma MRI scanner (V11C) with a 32-channel coil

located on the University campus. Children first completed a mock

scan. In the magnet, children watched a child-friendly movie of their

choice. Ear protectionwasused, and soundwaspresented throughMRI

compatible headphones.

We collected structural anatomical scans using a whole-head 3D

T1-weighted acquisition inversion prepared RF-spoiled gradient echo

protocol with prospective motion correction (Siemens vNAV; Tisdall

et al., 2012). We collected 93 axial slices at 1-mm isotropic resolution.

Each scan was reviewed by a licensed radiologist, and incidental find-

ings were reported to the parent/guardian. We also collected multi-

shell high-angular resolution diffusion-weighted imaging (HARDI) data

according to theAdolescent Brain andCognitiveDevelopment (ABCD)

protocol (Hagler et al., 2019). These scans were collected with a 1.7-

mm isotropic voxel size, using multiband imaging echo planar imag-

ing (acceleration factor = 3). The acquisition consisted of 96 diffusion

directions, 6 b = 0 frames, and 4 b-values (102 diffusion directions; 6

b = 500 s/mm2, 15 b = 1000 s/mm2, 15 b = 2000 s/mm2, and 60 b =

3000 s/mm2).

2.3.2 Diffusion-weighted imaging post-processing

Initial postprocessing was accomplished with DTIPrep v1.2.8 (Oguz

et al., 2014), TORTOISE DIFFPREP v3.1.0 (Irfanoglu, Nayak, Jenkins,

& Pierpaoli, 2017; Pierpaoli et al., 2010), AFNI (v 20.6.02), and FSL

v6.0.1 topup (Andersson, Skare, &Ashburner, 2003; Smith et al., 2004).

We also implemented a pre- and postanalysis quality check assess-

ing signal-to-noise of each diffusion b-value (Roalf et al., 2016). Initial

quality control was accomplished in DTIPrep to complete the follow-

ing steps: (1) image/diffusion information check; (2) padding/cropping

of data; (3) Rician noise removal; (4) slice-wise, interlace-wise,

and gradient-wise intensity and motion checking. The number of

acquisitions removed was used as a proxy for movement/bad data

quality and was included as a covariate in subsequent regression

analyses.

TORTOISE DIFFPREP was used to accomplish motion and eddy

current correction, and registration to the T1-weighted structural

scan, which was maintained in original subject space. An additional

registration step established that the region of interest (ROI) mask

(defined below) was appropriately registered to the diffusion image.

This was accomplished in AFNI using a 12 degree of freedom

affine registration of the T1 to the first b0 image of the DWI scan

(AFNI fat_proc_map_to_dti using 3dAllineate). Registration was visually
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TABLE 1 Descriptive and cumulative risk factors

Total sample (N= 198) ADHDonly (n= 104) TD only (n= 94) p

Child age 5.45 (0.89) 5.47 (0.91) 5.43 (0.87) .742

Child sex (%male) 70.7% 74% 67% .279

Child IQ 99.74 (12.63) 96.17 (12.92) 103.68 (11.08) <.001

Child ethnicity (% Latinx) 82.3% 81.7% 83% .712

P/TDBD inattention 1.27 (1.06) 2.25 (.60) 0.39 (.41) <.001

P/TDBD hyperactivity 1.53 (1.03) 2.37 (.56) 0.59 (.47) <.001

P/TDBDODD 0.97 (.88) 1.58 (.76) 0.30 (.37) <.001

Risk categories*

Low incomea 36.9% 38.5% 35.1% .625

Parental educationb 31.3% 31.7% 30.9% .894

Minority statusc 87.4% 88.5% 86.2% .628

Single parentd 26.8% 25.0% 17.0% .003

Parent stresse 16.2% 25.2% 6.4% <.001

Parent ADHDf 23.7% 33.7% 12.8% .001

Parent ERg 19.7% 26.9% 11.7% .007

Cumulative risk scores*

0 4.0% 1.9% 6.4%

1 28.3 22.1% 35.1%

2 24.2% 20.2% 28.7%

3 21.2% 26.0% 16.0%

4 14.1% 16.3% 11.7%

5 4.5% 8.7% 0.0%

6 2.5% 2.9% 2.1%

7 1.0% 1.9% 0.0%

Total risk score 2.41 (1.46) 2.80 (1.52) 2.00 (1.26) <.001

Abbreviations: ADHD, attention-deficit/hyperactivity disorder; DBD, disruptive behaviors disorders rating scale; ER, emotion regulation; ODD, oppositional

defiant disorder; P/T, highest teacher or parent report; TD, typically developing.

*Percentage in risk group.
aLow incomewas dummy coded as above/below 150% of the poverty line.
bParental education was dummy coded as either parent having/not having a 4-year college degree.
cAlthough race/ethnicity itself is not a risk factor, there is persistent evidence of racial/ethnic disparities in domains, such as health care, that may mitigate

negative outcomes. Parental minority status is included as a proxy for such disparities, with a dummy code indicating Caucasian/non-Hispanic or not.
dSingle parent was dummy coded as either single parent/not single parent household.
eParent report of clinically elevated distress on the Parenting Stress Index-Short Formwas dummy coded as above/below 85th percentile.
fParent report of clinically elevated levels of ADHDon the ADHD Self-Report Scale was dummy coded as clinically elevated/not elevated.
gParent report of clinically elevated levels of emotion dysregulation on theDifficulties in EmotionRegulation Scale-Short Formwas dummycoded as clinically

elevated/not elevated.

inspected at this phase and to assure alignment of the diffusion image

to the T1-weighted image derived from the Freesurfer atlas.

2.3.3 NODDI metrics

NODDI is an alternative diffusion model that can distinguish among

three tissue-property contributions to the diffusion signal: intracel-

lular, extracellular, and cerebrospinal fluid. The model is possible to

implement with the multishell HARDI protocol (Zhang et al., 2012).

With respect to the present study, the NODDI model allows estima-

tion of the contributions of neurite morphology from the diffusion sig-

nal, and such estimates such as neurite density from theNODDImodel

have been verified with histology in animals (Sato et al., 2017) and

pathological findings in humans (Sone et al., 2020). In the present study,

we focus on the NDI andODImetrics, derived from theNODDImodel,

with higher values NDI correlated with higher density of neuronal tis-

sue, and higher values of ODI indicating increased dendritic arboriza-

tion and complexity (Shao et al., 2021). We computed the NDI and

ODI metrics using the Microstructure Diffusion Toolbox (Harms, Fritz,

Tobisch, Goebel, & Roebroeck, 2017; Harms & Roebroeck, 2018). The

two diffusivities representing the diffusion coefficient of the isotropic
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compartment (diso) and the intrinsic diffusivity of the intra-neurite

compartments (d||) were fixed to diso = 3.00 × 10–3 mm2/s (for free

water in the brain at 37◦C) and d||= 1.70 × 10–3 mm2/s, which are the

standard values recommended in Zhang et al. (2012).

In addition to NDI and ODI, the NODDI model provides a compart-

ment estimating the free-water isotropic diffusion component (ISO).

This component can be used as a mask to mitigate partial volume

effects, especially where brain tissue directly interfaces with cere-

brospinal fluid (i.e., near the ventricles and in the extracortical space

under the skull).We implemented amask here such that voxels with an

ISO volume fraction>0.80were removed from analysis, whichmasked

the ventricles and extracortical space.

2.4 Construction of cortical surfaces and
semiautomated segmentation and parcellation

For each participant, in order to provide a semiautomated segmenta-

tion of subcortical structures, a cortical parcellation, and an estimate

of intracranial volume (Buckner et al., 2004), we constructed individ-

ual cortical surfaces for each subject from the T1-weighted volume

using Freesurfer v6.0 (Dale, Fischl, & Sereno, 1999; Fischl, Sereno, &

Dale, 1999). We then defined regions anatomically on individual cor-

tical surfaces using the semiautomated Freesurfer parcellation proce-

dure (Desikan et al., 2006; Fischl et al., 2004), which is itself based on

the anatomical conventions of Duvernoy et al. (1999).

We computed cortical thickness and subcortical volume as part of

the standard FreeSurfer reconstruction pipeline (Fischl & Dale, 2000),

as these have been shown to have high correspondence to histologi-

cal measurements (Cardinale et al., 2014). The use of a program origi-

nally developed for studies on adults is a legitimate concern. However,

Freesurfer hasbeenused to successfully createbrain surface represen-

tations for children (Tamnes et al., 2010), and even neonates (Pienaar,

Fischl, Caviness, Makris, & Grant, 2008), and has been used in previous

research on preschool children with ADHD (Jacobson et al., 2018).We

employed a similar procedure as these prior studies.

2.5 Definition of brain regions

We focused on the regions reviewed in the Introduction, which com-

prise a distributed network of regions previously associatedwith ACEs

in development, and identified several regions of interest (ROIs) that

were based on the Destrieux parcellation from Freesurfer (Desikan

et al., 2006; Fischl et al., 2004). These ROIs, detailed in Figure 1, were:

(1) left and right amygdala; (2) left and right hippocampus; (3) left and

right OFC; defined anatomically as the orbital H-shaped sulcus; (4) left

and right anterior cingulate cortex, defined as the average of the ante-

rior part of the cingulate gyrus and sulcus, and the middle-anterior

part of the cingulate gyrus and sulcus; (5) cerebellum; and (6) corpus

callosum. Data for volume were retrieved for all regions and data for

cortical thickness were retrieved for cortical regions using Freesurfer

v.6.0. The Freesurfer parcellation/segmentation was exported to the

T1-weighted volume space in AFNI (@SUMA_Make_Spec_FS). Then NDI

and ODI were retrieved for all regions defined in the T1-derived ROI

mask (AFNI3dROIstats), following visual verification of the registration

of the Freesurfer parcellation/segmentation to theDWI scan in the vol-

ume space.

2.6 Quality control of magnetic resonance
imaging scans

Movement artifacts in T1-weightedMRI scans are common, especially

in pediatric populations in this age range, and especially in children

with ADHD. Fortunately, Freesurfer is robust to movement-related

artifacts, as, except in extreme cases, the program is able to accurately

identify intensity differences between white matter and gray matter

inherent in the T1-weighted image. In some cases, however, manual

intervention is necessary. In this manual intervention, each individual

MRI scan is inspected, and in cases where the program does not ade-

quately identify the appropriate regional boundaries, manual edits are

employed.We also visually rated each T1-weighted image on a 7-point

scale ranging from “1=Poor” to “4=Excellent,”with allowances for half-

points (e.g., 3.5). Scans for bothgroupsweregenerally rated “VeryGood”

to “Excellent,” with an average of 3.56 (SD= 0.59) for the ADHD group,

and 3.44 (SD= 0.68) for the TD group. Therewere no significant group

differences for the quality of the scans, t(195)= –1.39, p= .17.

2.7 Data analyses

All analyses were conducted using SPSS Version 26. Data were first

inspected for missingness, with no missing data present for any vari-

ables of interest.We then examinedwhether therewere differences in

cumulative risk categories between ADHD and TD groups.

Next, multiple regression analyses were conducted to examine how

cumulative risk (thepredictor)was associatedwithbrainmeasures (the

outcome). Thus, we examined volume, NDI, andODI of the cerebellum,

corpus collosum, OFC, amygdala, hippocampus, and the anterior cin-

gulate. For cortical regions (i.e., OFC and anterior cingulate), we also

examined cortical thickness. These regions were chosen based on pre-

vious literature linking early risk factors to brain development, as we

reviewed in the introduction. For all regressions, the following covari-

ates of noninterest were included: child age, child sex, child IQ, aver-

age cortical thickness (for cortical ROIs), intracranial volume (for brain

volumemeasures), average brain NDI (for NDI measures), and average

brain ODI (for ODI measures). Intracranial volume was defined using

the procedure fromBuckner et al. (2004).

The first set of regressions also included diagnostic status as amod-

erating variable on cumulative risk (i.e., group [ADHD vs. TD] by cumu-

lative risk interaction). This assesses whether the impact of ACEs on

brain development is exacerbated in children with ADHD relative to

TD children. In a second set of regressions, we removed the categorical

ADHD diagnosis and examined, as covariates, more continuous mea-

sures of inattention, hyperactivity, and oppositional defiant behaviors
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F IGURE 2 Diagnostic groupmoderates association between
corpus callosumNDI and cumulative risk. This figure shows the
significant interaction of group (i.e., ADHD and typically developing
children; TD) and cumulative risk. Analyses controlled for child age,
child sex, child IQ, andmeanwhite matter neurite density index (NDI)

from the Disruptive Behaviors Disorders (DBD) rating scale. For the

DBD, the highest score from either the parent or the teacherwas used.

2.8 Correction for multiple comparisons

We focused on a small number of brain regions based on our review

of the literature, but the number of comparisons necessitates statisti-

cal correction to control for Type I error. We employed the false dis-

covery rate (FDR) correction (Benjamini & Hochberg, 1995) at two dif-

ferent nominal levels (q = .05 and .10), which defines the proportion

of errors committed by falsely rejecting null hypotheses. Family was

defined within each brain measure. Thus, there were 10 comparisons

each for volume, NDI andODI, and four comparisons for cortical thick-

ness.We interpret results in the context of these FDRproportions, and

in the context of effect sizes consideredagainst the associated95%CIs.

3 RESULTS

Descriptive and demographic variables are presented in Table 1. As

expected, there were significant group differences in inattention,

hyperactivity, and oppositional defiant behaviors. In addition, there

were significant differences in several risk categories, including single

parent status, parental stress, parental ADHD, parental emotion dys-

regulation, and total cumulative risk scores.

Confirming group differences, we examined whether group status

moderated the association between cumulative risk and brain out-

comes. There was a significant interaction between group and cumu-

lative riskwhen predicting the corpus callosumNDI (ß= .18,B= 0.009,

t(189) = 1.99, p = .048, B 95% CI [0.0001, 0.016]; see Figure 2). Prob-

ing of the interaction revealed therewas no association for TD children

(ß = .03, B = 0.001, t(88) = 0.49, p = .62, B 95% CI [–0.005, 0.007]).

However, for childrenwith ADHD, greater cumulative risk scoreswere

associatedwith increasedNDI (ß= .17,B=0.008, t(97)=2.81,p= .006,

B 95% CI [0.002, 0.013]; see Figure 2). There were no significant inter-

actions across other areas of interest (p’s> .05).

Next, we examined the main effect of cumulative risk across the

diagnostic groups, adding the continuous measures of inattention,

hyperactivity, and ODD as covariates. Table 2 shows these results.

WithinNDI, higher cumulative risk scoreswere significantly associated

with increasedNDI in the corpus callosum. However, thismain effect is

best interpreted in the context of the significant group by risk inter-

action (noted above) showing that the effect holds for children with

ADHD, but not TD children.

Examining the ODI measure, cumulative risk was significantly asso-

ciated with reduced ODI of the cerebellum. However, this result did

not survive FDR correction at q = .05 or .10. No other statistically sig-

nificant effects for ODI were identified. Examining volume, we found

that cumulative risk was negatively associated with cerebellar volume,

although again this did not survive themultiple comparison correction.

For the thicknessmeasure, no statistically significant effectswere iden-

tified in any regions that were examined.

4 DISCUSSION

In this study, we demonstrated that greater cumulative ACEs were

associated with increased NDI in the corpus collosum across all chil-

dren. However, an interaction emerged indicating that for the TD chil-

dren, there was no significant association between cumulative risk

and neurite density. In contrast, for children diagnosed with ADHD,

increased risk was associated with increased NDI. The differential

association between cumulative ACEs and microstructural indices of

neurite density in corpus callosum underscores the potential nega-

tive consequences to brain development in this region, especially in

children who are at increased risk for cumulative ACEs (Jackowski

et al., 2008; McCarthy-Jones et al., 2018; Rinne-Albers et al., 2016).

Furthermore, this interaction reinforces the notion that endogenous

characteristics of the child (i.e., existing psychopathology) interactwith

environmental factors to affect brain development in early childhood.

Taken together, our results highlight the role early cumulative ACEs

play in brain developmental across TD and childrenwith ADHD.

4.1 ACEs affect axonal density in corpus callosum

The strongest effect of ACEs on brain development in our preschool

sample was detected using the more sensitive measure of brain mor-

phology, namely, in the novel measure of neurite density derived from

the NODDI diffusion model. Thus, we did not detect strong effects for

more common metrics of volume and cortical thickness, even though

these effects have been reported in the previous literature (Chad-

Friedman et al., 2020; Duan et al., 2019; Lawson et al., 2013; Mach-

lin et al., 2020; Marečková et al., 2019; Noble et al., 2012). Further,

while one effect for ODI (in cerebellum) was nominally significant, it

did not survive FDR correction even at the more liberal q = .10 level.
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8 of 13 HARE ET AL.

TABLE 2 Associations between cumulative risks and brainmorphometric measures

B (SE) β t-Value p 95%CI for B

Neurite density index (NDI)

Corpus collosum 0.006 (0.002) .08 2.67 .009++ 0.002, 0.010

Cerebellum −0.008 (0.005) −.08 −1.64 .10 −0.020, 0.002

Left hemisphere

OFC 0.0008 (0.002) −.02 0.36 .72 −0.004, 0.005

Amygdala 0.002 (0.002) .03 0.77 .44 −0.002, 0.006

Hippocampus 0.0001 (0.002) .003 0.06 .95 −0.004, 0.004

Cingulate −0.0003 (0.002) −.01 −0.14 .89 −0.004, 0.004

Right hemisphere

OFC −0.002 (0.002) −.05 −1.11 .27 −0.007, 0.002

Amygdala 0.004 (0.002) .07 1.85 .07 −0.0002, 0.008

Hippocampus −0.002 (0.002) −.03 −0.77 .44 −0.005, 0.002

Cingulate 0.0003 (0.002) .01 0.15 .88 −0.004, 0.004

Orientation dispersion index (ODI)

Corpus collosum −0.0002 (0.004) −.003 −0.06 .95 −0.008, 0.008

Cerebellum −0.01 (0.005) −.10 −2.02 .045 −0.021, -0.0003

Left hemisphere

OFC 0.001 (0.003) .02 0.37 .71 −0.005, 0.008

Amygdala −0.0007 (0.002) −.02 −0.32 .75 −0.005, 0.004

Hippocampus −0.0005 (0.002) −.01 −0.21 .83 −0.005, 0.004

Cingulate −0.001 (0.003) −.03 −0.47 .64 −0.007, 0.004

Right hemisphere

OFC −0.001 (0.003) −.03 −1.55 .12 −0.001, 0.010

Amygdala 0.0005 (0.002) .01 0.22 .83 −0.004, 0.005

Hippocampus −0.001 (0.003) .02 0.47 .64 −0.004, 0.006

Cingulate −0.002 (0.003) −.04 −0.86 .39 −0.007, 0.003

Volume

Corpus collosum 5.09 (3.81) .09 1.33 .18 −2.43, 12.61

Cerebellum −410.57 (185.06) −.11 −2.22 .028 −775.63, -45.52

Left hemisphere

OFC 0.000 (0.000) .02 0.21 .83 −0.001, 0.001

Amygdala 2.34 (6.92) .02 0.34 .74 −11.31, 15.98

Hippocampus −6.64 (14.52) −.03 −0.46 .65 −35.33, 22.03

Cingulate 0.000 (0.000) .03 0.42 .67 −0.001, 0.001

Right hemisphere

OFC 0.000 (0.000) .02 0.31 .75 −0.001, 0.001

Amygdala 4.04 (8.02) .03 0.50 .62 −11.78, 19.87

Hippocampus −25.19 (14.88) −.10 −1.69 .09 −54.54, 4.16

Cingulate 0.000 (0.000) −.02 −0.26 .79 −0.001, 0.001

Cortical thickness

Left hemisphere

OFC 0.008 (0.008) .08 1.00 .32 −0.008, 0.024

Cingulate 0.008 (0.005) .10 1.50 .14 −0.003, 0.019

(Continues)
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HARE ET AL. 9 of 13

TABLE 2 (Continued)

B (SE) β t-Value p 95%CI for B

Right hemisphere

OFC 0.007 (0.008) .07 0.91 .36 −0.008, 0.022

Cingulate 0.004 (0.006) .05 0.77 .45 −0.006, 0.013

Note: Bold indicates that the p-value is less than the nominal alpha of .05. All regressions controlled for child symptoms of inattention, hyperactivity, oppo-

sitional defiant disorder, child age, child sex, and child IQ. Volume regressions controlled for total cranial volume, thickness regressions controlled for total

average thickness, and NDI andODI regressions controlled for meanwhitematter NDI or ODI, respectively.

Abbreviation: OFC, orbitofrontal cortex.

p-Valuesmarkedwith “++” indicate that these effects survived a False Discovery Rate (FDR) correction for multiple comparisons at q= .10.

The finding for cerebellar volume also does not survive this FDR cor-

rection. Thus, we focus our initial discussion on the NDI metric as it

pertains to corpus callosummicrostructure.

Interpretation of the NDI metric as it pertains to white or gray mat-

ter microstructure must proceed with caution. The diffusion signal in

gray matter is derived from a combination of several tissue compo-

nents, including axons, dendrites, and cell bodies of both neurons and

glia. TheNODDImodel helps to segregate these contributions to some

degree, and indeed in gray matter, the NDI metric from the NODDI

model has been verified in several histologic studies to be sensitive to

the density of neurons, such that reduced NDI is associated with the

loss or reduction of neurons in cases of lesion or tumor (Shao et al.,

2021) or degenerative disease (Kamagata et al., 2016). There is also

somemodest sensitivity to density differences in cytoarchitectonically

diverse tissue samples (Crombe et al., 2018).

In white matter, signal contributions are derived mainly from axons

and glia. Developmental studies of neurite density, measured by the

NODDI model, show increases in NDI in the white matter from ages

7 to 63 years (Chang et al., 2015) and in gray matter from ages 0 to

14 years (Zhao et al., 2021). However, our main finding is with respect

to NDI in the “corpus callosum,” which is a dense collection of inter-

hemispheric fibers, and thus the NODDImeasure in this region is most

sensitive to axonal density, not neural or glial cell body density or den-

dritic density. Fortunately, two studies have linked NDI in the corpus

callosum to histological differences in axonal density in developmen-

tal and adult samples. Indeed, NODDI of the corpus callosum closely

aligns with the known longitudinal distribution of fiber density in the

corpus callosum, such that theNDImetric decreaseswith a highdegree

of correlation as fiber density increases (Garic, Yeh, Graziano, & Dick,

2021; Genc, Malpas, Ball, Silk, & Seal, 2018). These studies found that

this association applies to children in the age range we study here. We

can thus speculate that the maintenance of callosal fibers following

exposure to ACEs, indicated by the positive association with NDI and

cumulative risk, may reflect a disruption of callosal axonal pruning, a

process that takes place in typical development in response to experi-

ence (LaMantia & Rakic, 1990). Atypical axonal pruning in the corpus

callosum is linked with a number of psychopathologies (Raine et al.,

2003) and seems to mainly affect excitatory rather than inhibitory

interhemispheric connections (Saugstad, 1994). Functionally, this may

translate to altered network connectivity across the two hemispheres,

such that typical processes of establishment of functional laterality

over development are disrupted (Everts et al., 2009). Such disruption

may impact the neural processes implementing several cognitive and

affective functions, including theonset ofmental healthdisorders asso-

ciated with early risk exposure (McLaughlin et al., 2012). Notably, this

disruption seems to be specific to childrenwith ADHDwho are repeat-

edly exposed to stressful situations, as the association with ACEs and

corpus callosum NDI only applied to the ADHD group (Figure 2). One

can speculate that childrenwithADHDalreadydiffer to somedegree in

terms of their trajectories of brain development relative to TD children

(Rubia, 2007), and that the additional burden of repeated ACEs exac-

erbates these differences. However, the directionality of this proposed

causal pathway is speculative given the quasi-experimental nature of

the study design. That said, it is an intriguing possibility that could be

explored in future work.

4.2 ACEs may influence cerebellar development

Two findings related to ODI and volume of the cerebellum were nom-

inally significant, but did not survive FDR correction. Thus, our brief

discussion below should be considered in that context. Here, we found

that greater cumulative risk scores were associated with reduced ODI

and volume of the cerebellum. This is an interesting result when con-

sidered in the context of cerebellar development and function. First,

with respect to cerebellar development, the cerebellum is unique with

respect to the rest of the brain because, unlike regions of the cortex

and other subcortical areas, neural proliferation in the cerebellum

proceeds beyond birth, and refinement of cerebellar neuronal maps

is heavily experience-dependent (Sotelo, 2004). Thus, the cerebellum

may be especially sensitive to cumulative ACEs, as developmental

processes related to neural proliferation may be affected both pre-

and postnatally. Second, with respect to cerebellar function, the

cerebellum has been implicated in a number of cognitive, affective, and

sensorimotor processes, and it is densely connected to cortical regions

supporting function in these domains. For example, lesions of the

posterior lobe of the cerebellum result in a well-described cerebellar

cognitive affective syndrome, which manifests as deficits in executive

function, visual spatial processing, linguistic processing, and emotion

regulation (Schmahmann, 2019). The cerebellum is part of a com-

prehensive cortico-subcortical network supporting these functions

and given its potential susceptibility to experiential influences during
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10 of 13 HARE ET AL.

development, it may contribute significantly to negative outcomes

following exposure to ACEs in both children with andwithout ADHD.

4.3 Limitations

Although the current study represents the first step in understanding

how cumulative risk impacts brain development in young children

with and without ADHD, it is not without limitations. First, the current

study is cross-sectional, which substantially limits our ability to make

causal claims. Longitudinal investigation of the cumulative impact over

development is necessary to better understand the neurobiological

sequelae of ACEs throughout development. However, this snapshot

of the preschool period does provide an opportunity to understand

resilience to ACEs as children develop and may especially be relevant

for understanding what factors predict later resilience. The current

study also focuses on children diagnosed with ADHD as the clinical

group of interest, which may limit generalizability to other clinical

disorders that emerge in childhood. However, as children with ADHD

are notably at higher risk for experiencing ACEs, a finding that was

replicated in the present study, the current study extends our under-

standing of this common childhood disorder. Finally, an additional

methodological limitation was the use of the standard recommended

values for the diffusion coefficients of diso and the intrinsic diffusivity

of the intra-neurite compartments d||, which were fixed to diso =

3.00 × 10–3 mm2/s (for free water in the brain at 37◦C) and d|| =

1.70 × 10–3 mm2/s. Studies have shown that these simplifying model

assumptions for parallel diffusivity are reasonable for white matter

in adults, but may be suboptimal for gray matter, or for infants earlier

in development (Fukutomi et al., 2018; Guerrero et al., 2019). Such

optimal parallel diffusivity values may vary across the brain, which

may lead to better fitting NODDI models in some regions as opposed

to others. This is a limitation when both gray matter and white matter

regions are considered in the same analysis.

5 CONCLUSION

Taken together, the impact of cumulative ACEs on microstructural

indices of cellularity across TD and children with ADHD underscores

the potential negative consequences of early ACEs on brain. Future

work should investigate if early intervention of malleable risk factors

(e.g., parent stress, parent ADHD) will prevent and/or reverse the neg-

ative impact of ACEs on brain development and alter subsequent psy-

chosocial functioning.
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