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1 | INTRODUCTION
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Abstract

Adverse childhood experiences (ACEs) put millions of children at risk for later health
problems. As childhood represents a critical developmental period, it is important
to understand how ACEs impact brain development in young children. In addition,
children with attention-deficit/hyperactivity disorder (ADHD) are more likely than
typically developing (TD) peers to experience ACEs. Therefore, the current study
examined the impact of ACEs on early brain development, using a cumulative risk
approach, in a large sample of children with and without ADHD. We examined 198
young children (M, = 5.45, 82.3% Hispanic/Latino; 52.5% ADHD) across measures
of brain volume, cortical thickness, neurite density index (NDI), and orientation dis-
persion index (ODI). For the NDI measure, there was a significant interaction between
group and cumulative risk (8 = .18, p = .048), such that for children with ADHD, but
not TD children, greater cumulate risk was associated with increased NDI in corpus
callosum. No other interactions were detected. Additionally, when examining across
groups, greater cumulative risk was associated with reduced ODI and volume in the
cerebellum, although these findings did not survive a correction for multiple compar-
isons. Our results highlight the role early cumulative ACEs play in brain development
across TD and children with ADHD.

KEYWORDS
adverse childhood experiences (ACEs), attention-deficit/hyperactivity disorder (ADHD), cumula-
tive risk, neurite density index (NDI), neuroimaging

[ADHD]). Each year, ACEs put millions of children at risk for health

problems (e.g., heart disease, obesity), psychological illness (e.g., alco-

A developmental psychopathology perspective advocates for (1) study-
ing the full range of variation from normality to psychopathology, (2)
understanding origins and mechanisms underlying psychopathology,
and (3) use of multiple units and levels of analysis to study salient
domains of functioning (Garber & Bradshaw, 2020; Miklosi, Mate, &
Balazs, 2020). In the context of this conceptual approach, we exam-
ine the effects of cumulative adverse childhood experiences (ACEs)
on structural brain development in typically developing (TD) and at-

risk youth (i.e., children with attention-deficit/hyperactivity disorder

holism, depression, suicide), and even early death (Brown et al., 2009;
Dube et al., 2002; McLaughlin et al., 2012). Typically, ACEs are explored
in isolation, even though many of these risk factors co-occur and are
cumulative (McLaughlin et al., 2010). Such co-occurring exogenous
factors—low family income, parental psychopathology, stress—interact
with endogenous characteristics of the child, such as their own psy-
chopathology. Examining these factors within a cumulative risk model
is thus most appropriate for understanding how ACEs affect brain

development during early childhood, in which the brain is especially
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vulnerable to early experiences (Fox, Levitt, & Nelson, 2010). Despite
this, most of the literature examining ACEs’ impact on brain develop-
ment has been conducted with older, restricted samples that do not
consider comorbid risk factors such as developmental disorders. This is
especially problematic for common disorders appearing in early child-
hood, like ADHD, as such children are at increased risk for experiencing
ACEs (Walker et al., 2020). Furthermore, the impact of ACEs on brain
development may be exacerbated relative to TD children. Thus, the
current study looks to fill these gaps by examining the impact of ACEs
on early brain development, using a cumulative risk approach, inalarge
sample of young children with and without ADHD. In line with previ-
ous research, the current study will focus on seven ACEs: low family
income and parental education (socioeconomic disadvantage), single-
parent household status (family structure), and parental factors such
as minority status, ADHD, stress, and emotion regulation (parental risk
characteristics).

It is important to understand the impact of ACEs across a spec-
trum of presentations by studying the range of variation from normal-
ity to psychopathology. ACEs can lead to pervasive negative health out-
comes that continue throughout adulthood (Mantymaa et al., 2012;
McLanahan, Tach, & Schneider, 2013). For example, children in single-
parent homes are at anincreased risk for decreased cognitive function-
ing and academic performance (Amato & Anthony, 2014; Brown, 2010),
with increased risk for later obesity, mental health problems, antiso-
cial behavior, and substance use (Duriancik & Goff, 2019; McLanahan
etal,, 2013). These risks are heightened in children with ADHD, as they
are more likely to experience multiple ACEs such as socioeconomic dis-
advantage (Msall et al., 1998), low parental education (Law, Sideridis,
Prock, & Sheridan, 2014; Machlin, McLaughlin, & Sheridan, 2020),
parental divorce (Schermerhorn et al., 2012; Wymbs et al., 2008), high
parental stress (Craig et al., 2016; Ronald, Pennell, & Whitehouse,
2011; Theule, Wiener, Tannock, & Jenkins, 2013), and parent psy-
chopathology (Chronis et al., 2003; Vidair et al., 2011). Understanding
the impact of cumulative ACEs across presentations (i.e., TD to ADHD)
in early childhood can illuminate pathways of risk and resilience.

In addition to well-studied mental health outcomes, a number of
studies have shown that ACEs are associated with neurobiological out-
comes, specifically in gray matter brain regions and the white matter
connectivity supporting these networks. Most studies have focused on
gray matter volume and cortical thickness differences in the limbic sys-
tem as a result of various ACEs. For example, ACEs have been associ-
ated with reductions in volume and thickness in the hippocampus, amyg-
dala, anterior cingulate cortex, and orbitofrontal cortex (OFC), in addition
to other cortical regions associated with limbic functions (Chad-
Friedman et al., 2020; Duan, Hare, Staring, & Deligiannidis, 2019;
Hanson, Chandra, Wolfe, & Pollak, 2011; Lawson, Duda, Avants, Wu, &
Farah, 2013; Machlin et al., 2020; Mareckova et al., 2019; Noble, Hous-
ton, Kan, & Sowell, 2012; see Figure 1). Research in TD children has
also shown reductions in volume of the cerebellum (Jackowski et al.,
2008), and reduced cerebellar volume is a reliable finding in children
with ADHD (Rubia, 2018). Indeed, the few studies examining ACEs in
children with ADHD have also found that more ACEs were associated
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with reduced cerebellar volume, in addition to reductions in subcor-
tical limbic regions (i.e., amygdala and hippocampus; Machlin et al.,
2020).

Maturation of white matter in the brain is also susceptible to influ-
ence from early exposure to ACEs. This is not surprising, given the pro-
tracted developmental timeline of myelination of axons in early child-
hood through adolescence (Giedd et al., 1999). Several studies have
shown reductions in volume or diffusion properties of the corpus callo-
sum (Jackowski et al., 2008; McCarthy-Jones et al., 2018; Rinne-Albers
et al., 2016). These changes persist into adulthood, suggesting pro-
longed negative impacts of early ACEs on brain development.

Information about gross gray matter and white matter changes are
informative, but they do not provide information about subtle changes
in local neural connections and structure. More recent methods, such
as neurite orientation dispersion and density imaging (NODDI), have
been developed to take advantage of the complex signal available
in diffusion-weighted images (Zhang, Schneider, Wheeler-Kingshott,
& Alexander, 2012). The neurite density index (NDI) recovered from
NODDI reconstruction can provide detailed information about how
the cytoarchitecture of neurons changes in response to exposure to
ACEs, specifically measuring the potential loss or maintenance of neu-
rons. The advantage of this metric is that it can be used to investi-
gate changes in both gray matter (primarily neurons) and white mat-
ter (primarily axons). Similarly, the orientation dispersion index (ODI)
is sensitive to reduction or maintenance of the complexity of dendritic
arborization. These indices can potentially provide information about
changes in local neural organization in response to specific experi-
ences, leading to a more comprehensive picture of the neural response
to ACEs.

1.1 | The current study

Although individual ACEs have been shown to impact later brain devel-
opment (Chad-Friedman et al., 2020; Hair, Hanson, Wolfe, & Pollak,
2015), there is extremely limited research examining how cumulative
risk factors impact brain development as early as preschool (Hawkey,
Tillman, Luby, & Barch, 2018). While some studies have included only
younger children (e.g., Luby et al., 2013), most include a large age range
of children at different stages of brain development (e.g., children aged
3-21). Further, as children with ADHD are at an increased risk for
experiencing these aforementioned ACEs, it is extremely important to
understand if ACEs differentially impact brain development in children
with ADHD. The current study looked to fill these gaps by examining
how ACEs, utilizing a cumulative risk approach, are associated with
brain development in young children with and without ADHD. More-
over, the current study tested if the impact of cumulative risk is exacer-
bated in children with ADHD compared to TD. The current study aimed
to establish this comprehensive picture by examining volumetric, corti-
cal thickness, NDI, and ODI differences in response to ACEs.

We hypothesized that cumulative risk would be negatively associ-

ated with children’s volume within the cerebellum, corpus collosum,
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FIGURE 1 Cortical and subcortical regions of interest. This figure shows all regions of interest examined, including the orbital frontal cortex
(OFC), anterior cingulate, corpus collosum (cortical regions), amygdala, hippocampus, and the cerebellum (subcortical regions)

the OFC, amygdala, hippocampus, and the anterior cingulate. We
also hypothesized that cumulative risk would be negatively associ-
ated with cortical thickness in the OFC and cingulate. Given the lim-
ited studies on NDI and ODI within young children, we hypothe-
sized that if cumulative risk interferes with synaptic formation, then
a negative association with measures of NDI and a positive associ-
ation with measures of ODI would be found. We expected to find
these associations across TD children and those diagnosed with ADHD,
although we expected that children with ADHD would have higher risk

scores.

2 | METHODS AND MATERIALS
2.1 | Participants and recruitment
Children and their caregivers were recruited from local schools and

mental health agencies via brochures, radio and newspaper ads, and

open houses/parent workshops. All children were required to be

enrolled in school during the previous year, have an estimated 1Q of
70 or higher, and have no confirmed history of an autism spectrum
disorder.

For the ADHD sample, ADHD diagnosis and comorbid disruptive
behavior disorders were assessed through a combination of parent
structured interview (Computerized-Diagnostic Interview Schedule
for Children [C-DISC]; Shaffer, Fisher, Lucas, Dulcan, & Schwab-Stone,
2000), and parent and teacher ratings of symptoms and impairment
(Disruptive Behavior Disorders Rating Scale, Impairment Rating Scale;
Fabiano et al., 2006; Pelham, Gnagy, Greenslade, & Milich, 1992), as
is recommended by standard practice (Pelham, Fabiano, & Massetti,
2005). Dual Ph.D. level clinician review was used to determine diagno-
sis and eligibility. For the TD sample, parents must have endorsed less
than four ADHD symptoms (across either inattention or hyperactivity/
impulsivity according to the DSM-5), less than four oppositional defi-
ant disorder (ODD) symptoms, and indicated no clinically signifi-
cant impairment (score below 3 on the impairment rating scale). The
final sample included 198 young children (70.7% male; M,ge = 5.45,
SD = 0.89, 82.3% Hispanic/Latino) with an equivalent distribution of
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children diagnosed with ADHD (52.5%) and those characterized as TD
(47.5%).

This study was approved by the university’s Institutional Review
Board. All families participated in a one-time assessment, which
included completion of the ADHD, ODD, and conduct disorder mod-
ules on the C-DISC and various questionnaires regarding their chil-
dren’s behavioral, academic, and emotional functioning. Similar ques-
tionnaires were also obtained from children’s teachers. Children also
completed a 25-min MRI scan.

2.2 | Risk measures
2.2.1 | Parental stress

The Parenting Stress Index-Short Form (PSI-SF; Abidin, 1995) is a
36-item self-report scale that measures stress in the parent-child
relationship due to parent distress, difficult child behavior, and dys-
functional parent-child interaction. For the purposes of this study,
the parental distress scale was used as a measure of parental stress
(Cronbach’'sa=.79).

2.2.2 | Parental ADHD

The ADHD Self-Report Scale (ASRS; Kessler et al., 2005) is an 18-item
self-report measure to assess manifestation of ADHD symptoms in
people aged 18 years or older. The ASRS has previously demonstrated
good internal consistency and concurrent validity (Adler et al., 2006).
The total score was used in this study (Cronbach’s a = .89).

2.2.3 | Parental emotion regulation

The Difficulties in Emotion Regulation Scale-Short Form (DERS-SF;
Kaufman et al., 2016; Victor & Klonsky, 2016) is an 18-item self-report
measure that assesses the presence and frequency of symptoms of
emotion dysregulation in adults. Responders are asked to rate the fre-
quency at which they experience particular symptoms. The total score
was used in this study with higher scores indicating more emotion dys-

regulation problems (Cronbach’s a = .80).

2.24 | Cumulative risk index

Consistent with prior work (Appleyard, Egeland, van Dulmen, &
Alan Sroufe, 2005; Bagner & Graziano, 2013), we transformed seven
variables into dichotomous variables, with a score of 1 = the presence
of risk and O = no risk. The risk variables included (1) low family
income, (2) parental education, (3) single-parent household status, (4)
parental minority status, (5) parental ADHD, (6) parental stress, and (7)
parental emotion regulation. Cumulative risk was calculated for each
participant by summing the seven dichotomized variables (possible

range in scores from O to 7), with higher scores indicating greater risk.
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See Table 1 for details on how risk scores were determined for each
variable.

2.3 | Image acquisition and processing
2.3.1 | MRI acquisition and processing

All imaging was performed using a research-dedicated 3-T Siemens
MAGNETOM Prisma MRI scanner (V11C) with a 32-channel coil
located on the University campus. Children first completed a mock
scan. In the magnet, children watched a child-friendly movie of their
choice. Ear protection was used, and sound was presented through MRI
compatible headphones.

We collected structural anatomical scans using a whole-head 3D
T1-weighted acquisition inversion prepared RF-spoiled gradient echo
protocol with prospective motion correction (Siemens vNAV; Tisdall
et al.,, 2012). We collected 93 axial slices at 1-mm isotropic resolution.
Each scan was reviewed by a licensed radiologist, and incidental find-
ings were reported to the parent/guardian. We also collected multi-
shell high-angular resolution diffusion-weighted imaging (HARDI) data
according to the Adolescent Brain and Cognitive Development (ABCD)
protocol (Hagler et al., 2019). These scans were collected with a 1.7-
mm isotropic voxel size, using multiband imaging echo planar imag-
ing (acceleration factor = 3). The acquisition consisted of 96 diffusion
directions, 6 b = O frames, and 4 b-values (102 diffusion directions; 6
b = 500 s/mm?, 15 b = 1000 s/mm?2, 15 b = 2000 s/mm?, and 60 b =
3000 s/mm?).

2.3.2 | Diffusion-weighted imaging post-processing

Initial postprocessing was accomplished with DTIPrep v1.2.8 (Oguz
et al., 2014), TORTOISE DIFFPREP v3.1.0 (Irfanoglu, Nayak, Jenkins,
& Pierpaoli, 2017; Pierpaoli et al., 2010), AFNI (v 20.6.02), and FSL
v6.0.1 topup (Andersson, Skare, & Ashburner, 2003; Smith et al., 2004).
We also implemented a pre- and postanalysis quality check assess-
ing signal-to-noise of each diffusion b-value (Roalf et al., 2016). Initial
quality control was accomplished in DTIPrep to complete the follow-
ing steps: (1) image/diffusion information check; (2) padding/cropping
of data; (3) Rician noise removal; (4) slice-wise, interlace-wise,
and gradient-wise intensity and motion checking. The number of
acquisitions removed was used as a proxy for movement/bad data
quality and was included as a covariate in subsequent regression
analyses.

TORTOISE DIFFPREP was used to accomplish motion and eddy
current correction, and registration to the T1-weighted structural
scan, which was maintained in original subject space. An additional
registration step established that the region of interest (ROI) mask
(defined below) was appropriately registered to the diffusion image.
This was accomplished in AFNI using a 12 degree of freedom
affine registration of the T1 to the first bO image of the DWI scan
(AFNI fat_proc_map_to_dti using 3dAllineate). Registration was visually
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TABLE 1 Descriptive and cumulative risk factors

Total sample (N = 198)

Child age 5.45(0.89)
Child sex (% male) 70.7%
Child 1Q 99.74(12.63)
Child ethnicity (% Latinx) 82.3%
P/T DBD inattention 1.27 (1.06)
P/T DBD hyperactivity 1.53(1.03)
P/T DBD ODD 0.97 (.88)
Risk categories’
Low income?® 36.9%
Parental education® 31.3%
Minority status® 87.4%
Single parentd 26.8%
Parent stress® 16.2%
Parent ADHDf 23.7%
Parent ER® 19.7%
Cumulative risk scores’
0 4.0%
1 28.3
2 24.2%
3 21.2%
4 14.1%
5 4.5%
6 2.5%
7 1.0%
Total risk score 2.41(1.46)

Developmental Psychobiology yyy py_Lsem

ADHD only (n = 104) TD only (n = 94) p
5.47(0.91) 5.43(0.87) 742
74% 67% 279
96.17 (12.92) 103.68 (11.08) <.001
81.7% 83% 712
2.25(.60) 0.39(.41) <.001
2.37(.56) 0.59(.47) <.001
1.58(.76) 0.30(.37) <.001
38.5% 35.1% .625
31.7% 30.9% .894
88.5% 86.2% .628
25.0% 17.0% .003
25.2% 6.4% <.001
33.7% 12.8% .001
26.9% 11.7% .007
1.9% 6.4%
22.1% 35.1%
20.2% 28.7%
26.0% 16.0%
16.3% 11.7%
8.7% 0.0%
2.9% 2.1%
1.9% 0.0%
2.80(1.52) 2.00(1.26) <.001

Abbreviations: ADHD, attention-deficit/hyperactivity disorder; DBD, disruptive behaviors disorders rating scale; ER, emotion regulation; ODD, oppositional

defiant disorder; P/T, highest teacher or parent report; TD, typically developing.

*Percentage in risk group.
2Low income was dummy coded as above/below 150% of the poverty line.

bParental education was dummy coded as either parent having/not having a 4-year college degree.

“Although race/ethnicity itself is not a risk factor, there is persistent evidence of racial/ethnic disparities in domains, such as health care, that may mitigate
negative outcomes. Parental minority status is included as a proxy for such disparities, with a dummy code indicating Caucasian/non-Hispanic or not.

d4Single parent was dummy coded as either single parent/not single parent household.

€Parent report of clinically elevated distress on the Parenting Stress Index-Short Form was dummy coded as above/below 85th percentile.

fParent report of clinically elevated levels of ADHD on the ADHD Self-Report Scale was dummy coded as clinically elevated/not elevated.

gParent report of clinically elevated levels of emotion dysregulation on the Difficulties in Emotion Regulation Scale-Short Form was dummy coded as clinically

elevated/not elevated.

inspected at this phase and to assure alignment of the diffusion image

to the T1-weighted image derived from the Freesurfer atlas.

2.3.3 | NODDI metrics

NODDI is an alternative diffusion model that can distinguish among
three tissue-property contributions to the diffusion signal: intracel-
lular, extracellular, and cerebrospinal fluid. The model is possible to
implement with the multishell HARDI protocol (Zhang et al., 2012).
With respect to the present study, the NODDI model allows estima-

tion of the contributions of neurite morphology from the diffusion sig-
nal, and such estimates such as neurite density from the NODDI model
have been verified with histology in animals (Sato et al., 2017) and
pathological findings in humans (Sone et al., 2020). In the present study,
we focus on the NDI and ODI metrics, derived from the NODDI model,
with higher values NDI correlated with higher density of neuronal tis-
sue, and higher values of ODI indicating increased dendritic arboriza-
tion and complexity (Shao et al., 2021). We computed the NDI and
ODI metrics using the Microstructure Diffusion Toolbox (Harms, Fritz,
Tobisch, Goebel, & Roebroeck, 2017; Harms & Roebroeck, 2018). The
two diffusivities representing the diffusion coefficient of the isotropic
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compartment (dis,) and the intrinsic diffusivity of the intra-neurite
compartments (d|]) were fixed to di, = 3.00 x 1073 mm?2/s (for free
water in the brain at 37°C) and d|| = 1.70 x 1073 mm?/s, which are the
standard values recommended in Zhang et al. (2012).

In addition to NDI and ODI, the NODDI model provides a compart-
ment estimating the free-water isotropic diffusion component (ISO).
This component can be used as a mask to mitigate partial volume
effects, especially where brain tissue directly interfaces with cere-
brospinal fluid (i.e., near the ventricles and in the extracortical space
under the skull). We implemented a mask here such that voxels with an
1SO volume fraction >0.80 were removed from analysis, which masked

the ventricles and extracortical space.

2.4 | Construction of cortical surfaces and
semiautomated segmentation and parcellation

For each participant, in order to provide a semiautomated segmenta-
tion of subcortical structures, a cortical parcellation, and an estimate
of intracranial volume (Buckner et al., 2004), we constructed individ-
ual cortical surfaces for each subject from the T1-weighted volume
using Freesurfer v6.0 (Dale, Fischl, & Sereno, 1999; Fischl, Sereno, &
Dale, 1999). We then defined regions anatomically on individual cor-
tical surfaces using the semiautomated Freesurfer parcellation proce-
dure (Desikan et al., 2006; Fischl et al., 2004), which is itself based on
the anatomical conventions of Duvernoy et al. (1999).

We computed cortical thickness and subcortical volume as part of
the standard FreeSurfer reconstruction pipeline (Fischl & Dale, 2000),
as these have been shown to have high correspondence to histologi-
cal measurements (Cardinale et al., 2014). The use of a program origi-
nally developed for studies on adults is a legitimate concern. However,
Freesurfer has been used to successfully create brain surface represen-
tations for children (Tamnes et al., 2010), and even neonates (Pienaar,
Fischl, Caviness, Makris, & Grant, 2008), and has been used in previous
research on preschool children with ADHD (Jacobson et al., 2018). We
employed a similar procedure as these prior studies.

2.5 | Definition of brain regions

We focused on the regions reviewed in the Introduction, which com-
prise a distributed network of regions previously associated with ACEs
in development, and identified several regions of interest (ROls) that
were based on the Destrieux parcellation from Freesurfer (Desikan
et al., 2006; Fischl et al., 2004). These ROls, detailed in Figure 1, were:
(1) left and right amygdala; (2) left and right hippocampus; (3) left and
right OFC; defined anatomically as the orbital H-shaped sulcus; (4) left
and right anterior cingulate cortex, defined as the average of the ante-
rior part of the cingulate gyrus and sulcus, and the middle-anterior
part of the cingulate gyrus and sulcus; (5) cerebellum; and (6) corpus
callosum. Data for volume were retrieved for all regions and data for
cortical thickness were retrieved for cortical regions using Freesurfer

v.6.0. The Freesurfer parcellation/segmentation was exported to the
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T1-weighted volume space in AFNI (@SUMA_Make_Spec_FS). Then NDI
and ODI were retrieved for all regions defined in the T1-derived ROI
mask (AFNI 3dROlstats), following visual verification of the registration
of the Freesurfer parcellation/segmentation to the DWI scan in the vol-
ume space.

2.6 | Quality control of magnetic resonance
imaging scans

Movement artifacts in T1-weighted MRI scans are common, especially
in pediatric populations in this age range, and especially in children
with ADHD. Fortunately, Freesurfer is robust to movement-related
artifacts, as, except in extreme cases, the program is able to accurately
identify intensity differences between white matter and gray matter
inherent in the T1-weighted image. In some cases, however, manual
intervention is necessary. In this manual intervention, each individual
MRI scan is inspected, and in cases where the program does not ade-
quately identify the appropriate regional boundaries, manual edits are
employed. We also visually rated each T1-weighted image on a 7-point
scale ranging from “1 = Poor” to “4 = Excellent,” with allowances for half-
points (e.g., 3.5). Scans for both groups were generally rated “Very Good”
to “Excellent,” with an average of 3.56 (SD = 0.59) for the ADHD group,
and 3.44 (SD = 0.68) for the TD group. There were no significant group
differences for the quality of the scans, t(195) = -1.39,p = .17.

2.7 | Data analyses

All analyses were conducted using SPSS Version 26. Data were first
inspected for missingness, with no missing data present for any vari-
ables of interest. We then examined whether there were differences in
cumulative risk categories between ADHD and TD groups.

Next, multiple regression analyses were conducted to examine how
cumulative risk (the predictor) was associated with brain measures (the
outcome). Thus, we examined volume, NDI, and ODI of the cerebellum,
corpus collosum, OFC, amygdala, hippocampus, and the anterior cin-
gulate. For cortical regions (i.e., OFC and anterior cingulate), we also
examined cortical thickness. These regions were chosen based on pre-
vious literature linking early risk factors to brain development, as we
reviewed in the introduction. For all regressions, the following covari-
ates of noninterest were included: child age, child sex, child 1Q, aver-
age cortical thickness (for cortical ROls), intracranial volume (for brain
volume measures), average brain NDI (for NDI measures), and average
brain ODI (for ODI measures). Intracranial volume was defined using
the procedure from Buckner et al. (2004).

The first set of regressions also included diagnostic status as a mod-
erating variable on cumulative risk (i.e., group [ADHD vs. TD] by cumu-
lative risk interaction). This assesses whether the impact of ACEs on
brain development is exacerbated in children with ADHD relative to
TD children. In a second set of regressions, we removed the categorical
ADHD diagnosis and examined, as covariates, more continuous mea-

sures of inattention, hyperactivity, and oppositional defiant behaviors
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Diagnostic Group Moderates Association Between
Cumulative Risk and Corpus Callosum NDI
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FIGURE 2 Diagnostic group moderates association between
corpus callosum NDI and cumulative risk. This figure shows the
significant interaction of group (i.e., ADHD and typically developing
children; TD) and cumulative risk. Analyses controlled for child age,
child sex, child 1Q, and mean white matter neurite density index (NDI)

from the Disruptive Behaviors Disorders (DBD) rating scale. For the
DBD, the highest score from either the parent or the teacher was used.

2.8 | Correction for multiple comparisons

We focused on a small number of brain regions based on our review
of the literature, but the number of comparisons necessitates statisti-
cal correction to control for Type | error. We employed the false dis-
covery rate (FDR) correction (Benjamini & Hochberg, 1995) at two dif-
ferent nominal levels (g = .05 and .10), which defines the proportion
of errors committed by falsely rejecting null hypotheses. Family was
defined within each brain measure. Thus, there were 10 comparisons
each for volume, NDI and ODI, and four comparisons for cortical thick-
ness. We interpret results in the context of these FDR proportions, and

in the context of effect sizes considered against the associated 95% Cls.

3 | RESULTS

Descriptive and demographic variables are presented in Table 1. As
expected, there were significant group differences in inattention,
hyperactivity, and oppositional defiant behaviors. In addition, there
were significant differences in several risk categories, including single
parent status, parental stress, parental ADHD, parental emotion dys-
regulation, and total cumulative risk scores.

Confirming group differences, we examined whether group status
moderated the association between cumulative risk and brain out-
comes. There was a significant interaction between group and cumu-
lative risk when predicting the corpus callosum NDI (8 =.18, B =0.009,
t(189) = 1.99, p =.048, B 95% CI [0.0001, 0.016]; see Figure 2). Prob-
ing of the interaction revealed there was no association for TD children
(8 =.03,B=0.001, t(88) = 049, p = .62, B 95% CI [-0.005, 0.007]).

However, for children with ADHD, greater cumulative risk scores were

Developmental Psychobiology vy gy_Lzem

associated withincreased NDI (8=.17,B=0.008, t(97) = 2.81,p =.006,
B 95% CI1[0.002,0.013]; see Figure 2). There were no significant inter-
actions across other areas of interest (p’s > .05).

Next, we examined the main effect of cumulative risk across the
diagnostic groups, adding the continuous measures of inattention,
hyperactivity, and ODD as covariates. Table 2 shows these results.
Within NDI, higher cumulative risk scores were significantly associated
with increased NDI in the corpus callosum. However, this main effect is
best interpreted in the context of the significant group by risk inter-
action (noted above) showing that the effect holds for children with
ADHD, but not TD children.

Examining the ODI measure, cumulative risk was significantly asso-
ciated with reduced ODI of the cerebellum. However, this result did
not survive FDR correction at g = .05 or .10. No other statistically sig-
nificant effects for ODI were identified. Examining volume, we found
that cumulative risk was negatively associated with cerebellar volume,
although again this did not survive the multiple comparison correction.
For the thickness measure, no statistically significant effects were iden-

tified in any regions that were examined.

4 | DISCUSSION

In this study, we demonstrated that greater cumulative ACEs were
associated with increased NDI in the corpus collosum across all chil-
dren. However, an interaction emerged indicating that for the TD chil-
dren, there was no significant association between cumulative risk
and neurite density. In contrast, for children diagnosed with ADHD,
increased risk was associated with increased NDI. The differential
association between cumulative ACEs and microstructural indices of
neurite density in corpus callosum underscores the potential nega-
tive consequences to brain development in this region, especially in
children who are at increased risk for cumulative ACEs (Jackowski
et al., 2008; McCarthy-Jones et al., 2018; Rinne-Albers et al., 2016).
Furthermore, this interaction reinforces the notion that endogenous
characteristics of the child (i.e., existing psychopathology) interact with
environmental factors to affect brain development in early childhood.
Taken together, our results highlight the role early cumulative ACEs
play in brain developmental across TD and children with ADHD.

4.1 | ACEs affect axonal density in corpus callosum

The strongest effect of ACEs on brain development in our preschool
sample was detected using the more sensitive measure of brain mor-
phology, namely, in the novel measure of neurite density derived from
the NODDI diffusion model. Thus, we did not detect strong effects for
more common metrics of volume and cortical thickness, even though
these effects have been reported in the previous literature (Chad-
Friedman et al., 2020; Duan et al., 2019; Lawson et al., 2013; Mach-
lin et al., 2020; Mareckova et al., 2019; Noble et al., 2012). Further,
while one effect for ODI (in cerebellum) was nominally significant, it

did not survive FDR correction even at the more liberal g = .10 level.
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TABLE 2 Associations between cumulative risks and brain morphometric measures

B (SE) B t-Value p 95% Cl for B
Neurite density index (NDI)
Corpus collosum 0.006 (0.002) .08 2.67 .009++ 0.002,0.010
Cerebellum —0.008 (0.005) —.08 —1.64 .10 —0.020,0.002
Left hemisphere
OFC 0.0008 (0.002) -.02 0.36 72 —0.004, 0.005
Amygdala 0.002 (0.002) .03 0.77 44 —-0.002,0.006
Hippocampus 0.0001 (0.002) .003 0.06 .95 —0.004,0.004
Cingulate —0.0003 (0.002) -.01 -0.14 .89 —0.004, 0.004
Right hemisphere
OFC —0.002 (0.002) -.05 -111 27 —0.007,0.002
Amygdala 0.004 (0.002) 07 1.85 .07 —0.0002, 0.008
Hippocampus —0.002 (0.002) -.03 -0.77 44 —0.005,0.002
Cingulate 0.0003 (0.002) .01 0.15 .88 —0.004, 0.004

Orientation dispersion index (ODI)

Corpus collosum —0.0002 (0.004) —.003 -0.06 .95 —0.008,0.008
Cerebellum —0.01(0.005) -.10 -2.02 .045 —-0.021,-0.0003
Left hemisphere
OFC 0.001 (0.003) .02 0.37 71 —0.005,0.008
Amygdala —0.0007 (0.002) -.02 -0.32 .75 —0.005,0.004
Hippocampus —0.0005 (0.002) -.01 -0.21 .83 —0.005,0.004
Cingulate —0.001 (0.003) -.03 -0.47 .64 —0.007,0.004
Right hemisphere
OFC —0.001 (0.003) -.03 —1.55 A2 —0.001,0.010
Amygdala 0.0005 (0.002) .01 0.22 .83 —0.004, 0.005
Hippocampus —0.001 (0.003) .02 0.47 .64 —0.004,0.006
Cingulate —0.002 (0.003) -.04 -0.86 .39 —0.007,0.003
Volume
Corpus collosum 5.09(3.81) .09 1.33 .18 —243,12.61
Cerebellum —410.57 (185.06) -11 —-2.22 .028 —775.63,-45.52
Left hemisphere
OFC 0.000 (0.000) .02 0.21 .83 —0.001,0.001
Amygdala 2.34(6.92) .02 0.34 74 —11.31,15.98
Hippocampus —6.64(14.52) -.03 —-0.46 .65 —35.33,22.03
Cingulate 0.000 (0.000) .03 0.42 .67 —0.001,0.001
Right hemisphere
OFC 0.000 (0.000) .02 0.31 .75 —0.001,0.001
Amygdala 4.04(8.02) .03 0.50 .62 -11.78,19.87
Hippocampus —25.19(14.88) -.10 -1.69 .09 —54.54,4.16
Cingulate 0.000 (0.000) —-.02 -0.26 79 —0.001,0.001
Cortical thickness
Left hemisphere
OFC 0.008 (0.008) .08 1.00 .32 —0.008,0.024
Cingulate 0.008 (0.005) .10 1.50 14 —0.003,0.019
(Continues)
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TABLE 2 (Continued)

B (SE) B
Right hemisphere
OFC 0.007 (0.008) .07
Cingulate 0.004 (0.006) .05

Developmental Psychobiology yyy gyl

t-Value p 95% Cl for B
0.91 .36 —0.008,0.022
0.77 45 —0.006,0.013

Note: Bold indicates that the p-value is less than the nominal alpha of .05. All regressions controlled for child symptoms of inattention, hyperactivity, oppo-
sitional defiant disorder, child age, child sex, and child 1Q. Volume regressions controlled for total cranial volume, thickness regressions controlled for total
average thickness, and NDI and ODI regressions controlled for mean white matter NDI or ODI, respectively.

Abbreviation: OFC, orbitofrontal cortex.

p-Values marked with “++" indicate that these effects survived a False Discovery Rate (FDR) correction for multiple comparisons at g =.10.

The finding for cerebellar volume also does not survive this FDR cor-
rection. Thus, we focus our initial discussion on the NDI metric as it
pertains to corpus callosum microstructure.

Interpretation of the NDI metric as it pertains to white or gray mat-
ter microstructure must proceed with caution. The diffusion signal in
gray matter is derived from a combination of several tissue compo-
nents, including axons, dendrites, and cell bodies of both neurons and
glia. The NODDI model helps to segregate these contributions to some
degree, and indeed in gray matter, the NDI metric from the NODDI
model has been verified in several histologic studies to be sensitive to
the density of neurons, such that reduced NDI is associated with the
loss or reduction of neurons in cases of lesion or tumor (Shao et al.,
2021) or degenerative disease (Kamagata et al., 2016). There is also
some modest sensitivity to density differences in cytoarchitectonically
diverse tissue samples (Crombe et al., 2018).

In white matter, signal contributions are derived mainly from axons
and glia. Developmental studies of neurite density, measured by the
NODDI model, show increases in NDI in the white matter from ages
7 to 63 years (Chang et al., 2015) and in gray matter from ages O to
14 years (Zhao et al., 2021). However, our main finding is with respect
to NDI in the “corpus callosum,” which is a dense collection of inter-
hemispheric fibers, and thus the NODDI measure in this region is most
sensitive to axonal density, not neural or glial cell body density or den-
dritic density. Fortunately, two studies have linked NDI in the corpus
callosum to histological differences in axonal density in developmen-
tal and adult samples. Indeed, NODDI of the corpus callosum closely
aligns with the known longitudinal distribution of fiber density in the
corpus callosum, such that the NDI metric decreases with a high degree
of correlation as fiber density increases (Garic, Yeh, Graziano, & Dick,
2021; Genc, Malpas, Ball, Silk, & Seal, 2018). These studies found that
this association applies to children in the age range we study here. We
can thus speculate that the maintenance of callosal fibers following
exposure to ACEs, indicated by the positive association with NDI and
cumulative risk, may reflect a disruption of callosal axonal pruning, a
process that takes place in typical development in response to experi-
ence (LaMantia & Rakic, 1990). Atypical axonal pruning in the corpus
callosum is linked with a number of psychopathologies (Raine et al.,
2003) and seems to mainly affect excitatory rather than inhibitory
interhemispheric connections (Saugstad, 1994). Functionally, this may
translate to altered network connectivity across the two hemispheres,
such that typical processes of establishment of functional laterality

over development are disrupted (Everts et al., 2009). Such disruption
may impact the neural processes implementing several cognitive and
affective functions, including the onset of mental health disorders asso-
ciated with early risk exposure (McLaughlin et al., 2012). Notably, this
disruption seems to be specific to children with ADHD who are repeat-
edly exposed to stressful situations, as the association with ACEs and
corpus callosum NDI only applied to the ADHD group (Figure 2). One
can speculate that children with ADHD already differ to some degreein
terms of their trajectories of brain development relative to TD children
(Rubia, 2007), and that the additional burden of repeated ACEs exac-
erbates these differences. However, the directionality of this proposed
causal pathway is speculative given the quasi-experimental nature of
the study design. That said, it is an intriguing possibility that could be
explored in future work.

4.2 | ACEs may influence cerebellar development

Two findings related to ODI and volume of the cerebellum were nom-
inally significant, but did not survive FDR correction. Thus, our brief
discussion below should be considered in that context. Here, we found
that greater cumulative risk scores were associated with reduced ODI
and volume of the cerebellum. This is an interesting result when con-
sidered in the context of cerebellar development and function. First,
with respect to cerebellar development, the cerebellum is unique with
respect to the rest of the brain because, unlike regions of the cortex
and other subcortical areas, neural proliferation in the cerebellum
proceeds beyond birth, and refinement of cerebellar neuronal maps
is heavily experience-dependent (Sotelo, 2004). Thus, the cerebellum
may be especially sensitive to cumulative ACEs, as developmental
processes related to neural proliferation may be affected both pre-
and postnatally. Second, with respect to cerebellar function, the
cerebellum has been implicated in a number of cognitive, affective, and
sensorimotor processes, and it is densely connected to cortical regions
supporting function in these domains. For example, lesions of the
posterior lobe of the cerebellum result in a well-described cerebellar
cognitive affective syndrome, which manifests as deficits in executive
function, visual spatial processing, linguistic processing, and emotion
regulation (Schmahmann, 2019). The cerebellum is part of a com-
prehensive cortico-subcortical network supporting these functions
and given its potential susceptibility to experiential influences during
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development, it may contribute significantly to negative outcomes
following exposure to ACEs in both children with and without ADHD.

4.3 | Limitations

Although the current study represents the first step in understanding
how cumulative risk impacts brain development in young children
with and without ADHD, it is not without limitations. First, the current
study is cross-sectional, which substantially limits our ability to make
causal claims. Longitudinal investigation of the cumulative impact over
development is necessary to better understand the neurobiological
sequelae of ACEs throughout development. However, this snapshot
of the preschool period does provide an opportunity to understand
resilience to ACEs as children develop and may especially be relevant
for understanding what factors predict later resilience. The current
study also focuses on children diagnosed with ADHD as the clinical
group of interest, which may limit generalizability to other clinical
disorders that emerge in childhood. However, as children with ADHD
are notably at higher risk for experiencing ACEs, a finding that was
replicated in the present study, the current study extends our under-
standing of this common childhood disorder. Finally, an additional
methodological limitation was the use of the standard recommended
values for the diffusion coefficients of dis, and the intrinsic diffusivity
of the intra-neurite compartments d||, which were fixed to dj,
3.00 x 103 mm?2/s (for free water in the brain at 37°C) and d||
1.70 x 1073 mm?/s. Studies have shown that these simplifying model

assumptions for parallel diffusivity are reasonable for white matter
in adults, but may be suboptimal for gray matter, or for infants earlier
in development (Fukutomi et al., 2018; Guerrero et al., 2019). Such
optimal parallel diffusivity values may vary across the brain, which
may lead to better fitting NODDI models in some regions as opposed
to others. This is a limitation when both gray matter and white matter

regions are considered in the same analysis.

5 | CONCLUSION

Taken together, the impact of cumulative ACEs on microstructural
indices of cellularity across TD and children with ADHD underscores
the potential negative consequences of early ACEs on brain. Future
work should investigate if early intervention of malleable risk factors
(e.g., parent stress, parent ADHD) will prevent and/or reverse the neg-
ative impact of ACEs on brain development and alter subsequent psy-

chosocial functioning.
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