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Abstract
The ability to dissociate axonal density in vivo from other microstructural properties is important for the diagnosis and treat-
ment of neurologic disease, and new methods to do so are being developed. We investigated one such method—restricted 
diffusion imaging (RDI)—to see whether it can more accurately replicate histological axonal density patterns in the corpus 
callosum (CC) of adults and children compared to diffusion tensor imaging (DTI), neurite orientation dispersion and den-
sity imaging (NODDI), and generalized q-sampling imaging (GQI) methods. To do so, we compared known axonal density 
patterns defined by histology to diffusion-weighted imaging (DWI) scans of 840 healthy 20- to 40-year-old adults, and to 
DWI scans of 129 typically developing 7-month-old to 18-year-old children and adolescents. Contrast analyses were used 
to compare pattern similarities between the in vivo metric and previously published histological density models. We found 
that RDI was effective at mapping axonal density of small (Cohen’s d = 2.60) and large fiber sizes (Cohen’s d = 2.84) in 
adults. The same pattern was observed in the developing sample (Cohen’s d = 3.09 and 3.78, respectively). Other metrics, 
notably NODDI’s intracellular volume fraction in adults and GQI generalized fractional anisotropy in children, were also 
sensitive metrics. In conclusion, the study showed that the novel RDI metric is sensitive to density of small and large axons 
in adults and children, with both single- and multi-shell acquisition DWI data. Its effectiveness and availability to be used 
on standard as well as advanced DWI acquisitions makes it a promising method in clinical settings.

Keywords  Restricted diffusion imaging (RDI) · Axonal density · Neurite orientation dispersion and density imaging 
(NODDI) · Diffusion tensor imaging (DTI)

Introduction

The ability to quantify microstructural properties of neural 
tissue is important for the diagnosis and treatment of neu-
rologic disease. Significant advances in the acquisition and 
analysis of diffusion-weighted magnetic resonance imaging 
(DW-MRI) data have allowed researchers to target specific 
sources of the DW-MRI signal associated with specific tis-
sue properties. Recent analysis approaches, such as restricted 

diffusion imaging (Yeh et al. 2017) and neurite orientation 
dispersion and density imaging (Zhang et al. 2012), have 
provided more fine-grained metrics that augment, and in 
some cases replace, the more traditional metrics that are 
reported in diffusion tensor imaging (DTI) studies. The pre-
sent investigation is an attempt to understand whether such 
new metrics are sensitive to a particular microstructural 
property of white matter, that of axonal density. Providing 
an in vivo measure of axonal density has high potential for 
clinical importance. For example, histological studies have 
shown that axonal density is related to the progression rate 
of multiple sclerosis (Tallantyre 2009), hereditary spastic 
paraplegia (Deluca et al. 2004), and it is a sensitive measure 
of multiple sclerosis lesion in an animal model (Seehusen 
and Baumgartner 2010). The density of fibers of a particular 
diameter is also important because neural conduction veloc-
ity scales with axonal diameter (Ritchie 1982), influencing 
the timing and rapidity of information transfer in the nervous 
system. Thus, being able to quantify these density changes 
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in vivo during development could provide essential insight 
into disease progression, development, and general nervous 
system structure/function relationships.

The new metrics we investigate extend from previous 
algorithms used to reconstruct DWI data. The most popular 
instantiation of DWI reconstruction is diffusion tensor imag-
ing (DTI), which obtains familiar metrics such as fractional 
anisotropy (FA), mean diffusivity (MD), axial diffusivity 
(AD), and radial diffusivity (RD), that provide information 
about the directional nature of water diffusion through tis-
sue. AD measures the longitudinal component or eigenvalue 
( �

1
 ) of the diffusion tensor model, and it has been shown to 

be sensitive to axon integrity (Song 2003). RD is the average 
of the remaining eigenvalues ([�

2
 + �

3
]/2), which are perpen-

dicular to the longitudinal component, and which have been 
associated with myelin integrity (Song 2003, 2005). MD is 
the average of these three principal eigenvalues ([�

1
 + �

2
 + 

�
3
]/3). Finally, FA is the most frequently used metric. This 

metric indicates how the other diffusion metrics stand in 
relation to one another, providing a summary index of the 
directional nature of water diffusion in the voxel (Beaul-
ieu 2002). It is scaled such that 0 represents unrestricted 
or isotropic diffusion, and 1 indicates water diffusion that 
is anisotropic, or restricted in all but one direction. These 
metrics have been useful in tracking various fiber pathways 
in health and disease across the lifespan (Chan 2008; Lebel 
and Beaulieu 2009; Nir 2013), but none of these DTI metrics 
is designed to isolate and characterize the specific contribu-
tions of axonal density to the diffusion-weighted imaging 
signal.

With updates in MRI hardware and software, more dif-
fusion directions can be acquired in a shorter amount of 
time, which has allowed for the use of better imaging recon-
struction algorithms. These High Angular Resolution Diffu-
sion Imaging (HARDI) algorithms improve the estimation 
of water diffusion in multiple directions, leading to better 
estimation and resolution of such crossing and kissing fib-
ers. For example, Generalized Q-Sampling Imaging (GQI) 
has been employed to efficiently reconstruct the orientation 
distribution function (ODF) of water diffusion from HARDI 
acquisitions (Yeh et al. 2010; Daducci 2014). Two metrics 
can be recovered from these diffusion models: Quantita-
tive anisotropy (QA) and generalized fractional anisotropy 
(GFA). QA is defined as the amount of anisotropic spins that 
diffuse along a fiber orientation, while GFA can be thought 
of as a higher order generalization of FA (Cohen-Adad 2008; 
Tuch 2004). Regardless of the improvements GQI has pro-
vided for MRI, these metrics are still not optimal for measur-
ing axonal density differences (Zhang et al. 2012).

Other imaging reconstruction methods have focused 
on estimation of microstructural properties of cell body 
processes—dendrites and axons, i.e., neurites. For exam-
ple, Neurite Orientation Dispersion and Density Imaging 

(NODDI) ascribes the signal of water protons in tissue into 
three components: isotropic diffusion representing free 
motion in areas such as ventricles, intracellular volume dif-
fusion representing restricted water in dendrites and neu-
rons, and extracellular volume diffusion representing glial 
cells, cell bodies, and the extracellular environment (Zhang 
et al. 2012). A number of studies have compared the NODDI 
signal to known histological patterns in white matter. For 
example, Zhang et al. (2012) have shown that NODDI is 
capable of disentangling two components of FA, neurite 
density and orientation dispersion, allowing the two to be 
studied individually. In an important study that serves as a 
model for our present investigation, Genc et al. (2017) have 
also used NODDI to map corpus callosum density in chil-
dren and adolescents. They found that NODDI intracellular 
volume fraction (ICVF) and orientation distribution function 
(OD) metrics were sensitive to histologic differences along 
the longitudinal axis of the corpus callosum. We conducted a 
partial replication of this study, and will return to the details 
of it in the Method.

Finally, Restricted Diffusion Imaging (RDI) is a recent 
measure that has been proposed to index changes in cel-
lularity (i.e., cellular density), which affects local diffusion 
of water molecules. RDI attempts to separate non-restricted 
diffusion of water molecules from restricted diffusion of 
water molecules by focusing on the difference in diffusion 
displacement of each component. As such, the model can 
measure restricted diffusion while ignoring non-restricted 
diffusion. Yeh et al. (2017) showed that RDI was sensitive 
to differences in cellular density in a manufactured phan-
tom, and in rat cardiac tissue that sustained a lesion, which 
resulted in the migration of macrophages to the lesion site. 
The density changes resulting from this macrophage migra-
tion were detectable in changes in RDI. Thus, RDI seems to 
be sensitive to changes in cellular density.

What is unknown, though, from these initial studies is 
whether RDI metrics are sensitive to density of axonal fib-
ers. It is well known that axons at cross-section differ in 
diameter (Aboitiz et al. 1992) and this affects the density 
of axons within the fiber pathway. For example, the Aboitiz 
et al. (1992) histological examination of 20 post-mortem 
healthy adult brains showed that the density of small and 
large diameter axons differs across the anterior-posterior axis 
of the corpus callosum. This now well-established density 
pattern has been replicated with other measures in more 
recent work (Suzuki 2016; Caminiti 2013; Bjornholm 2017), 
including the study by Genc and colleagues (Genc et al. 
2018) that serves as a model for the present investigation. 
As we noted earlier, it would be important for a number of 
reasons to establish in vivo metrics that are sensitive to dif-
ferences in axonal density. Given its high sensitivity to dif-
fusion changes as a function of cellular density, we expected 
RDI to be most sensitive to these changes relative to other 
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established metrics. Thus, the primary aim of this study is 
to address whether RDI is a candidate metric for measur-
ing axonal density in vivo, and further whether it does so 
better than other available diffusion metrics. To do this, we 
measured segments of the corpus callosum, which have been 
known to differ in axonal density on the anterior-posterior 
axis (Aboitiz et al. 1992; Reyes-Haro et al. 2013; Riise and 
Pakkenberg 2011; Suzuki 2016). We used both a healthy 
adult sample (n = 840) and a healthy developing sample (n = 
129) to test whether previous histological results match the 
segmental pattern reflected using RDI in vivo. To demon-
strate that RDI measures a unique characteristic in the imag-
ing modality, we compared the RDI measurements to that of 
DTI metrics (AD, RD, FA, and MD), GQI diffusion metrics 
(GFA and QA), and NODDI metrics (ISO, ICVF, and OD). 
We hypothesized that RDI would most reliably, relative to 
other measures, replicate the Aboitiz (Aboitiz et al. 1992) 
anterior-posterior density pattern established in histology.

Paradigm and summary of both experiments

Two studies were designed to investigate the sensitivity of 
various diffusion metrics to the anterior-posterior micro-
structural organization of the corpus callosum. Our study 
design uses as a point of departure the study by Genc et al. 
(2018). We used two publicly available datasets. In Study 1 
we analyzed 840 multi-shell adult high angular resolution 
diffusion-weighted imaging (HARDI) scans from the Human 
Connectome Project (http://​www.​human​conne​ctome.​org). 
Study 1 was designed to replicate and match the corpus 
callosum density pattern found in the Aboitiz et al. (1992) 
histological study. In Study 2, we conducted the same analy-
sis on a different dataset of 129 infants, children, and ado-
lescents from the C-MIND study (https://​resea​rch.​cchmc.​
org/c-​mind/). We used the single-shell acquisition from this 
study to establish whether the RDI metric could be sensitive 
in single-shell data, which are also still common acquisi-
tions, especially in clinical settings. Simultaneously, the use 
of the C-MIND data allowed us to investigate whether the 
density pattern can be detected in a developmental sample. 
For both studies we computed DTI metrics (FA, RD, AD, 
MD), GQI metrics (NQA, GFA, and RDI), and (in Study 
1 only) NODDI metrics (ICVF, OD, ISO). We applied a 
corpus callosum mask based on (Aboitiz et al. 1992) to com-
pute summary statistics of each metric for each subregion. 
The mask was applied in an automated fashion for Study 1, 
and hand-drawn for Study 2 (to accommodate the different 
brain sizes in the developmental sample (Wilke et al. 2008)). 
A summary of the sample sizes, scanning parameters, and 
metrics analyzed for each study can be found on Table 1.

Diffusion metrics. We calculated and compared four DTI 
metrics (FA, RD, AD, and MD), three GQI metrics (nQA, 

GFA, and RDI), and three NODDI metrics (ICVF, OD, 
ISO). The diffusion tensor was used to calculate the eigen-
values reflecting diffusion parallel and perpendicular to each 
of the fibers along three axes (x, y, z). The resulting eigen-
values were then used to compute indices of FA, RD, AD, 
and MD (Basser et al. 1994; Hasan and Narayana 2006). FA 
is an index for the amount of diffusion asymmetry within a 
voxel, normalized to take values from zero (isotropic diffu-
sion) to one (anisotropic diffusion). FA is sensitive to micro-
structural changes in white matter, with higher FA values 
indicating more directional diffusion of water. This value can 
be decomposed into AD, measuring the parallel eigenvalue 
( �

1
 ), and RD, measuring the average of the secondary and 

tertiary perpendicular eigenvalues ([(�
2
 + �

3
)]/2). AD and 

RD quantifications are sensitive to axon integrity and myelin 
integrity, respectively (Winston 2012; Basser et al. 1994). 
MD is a summary mean of the three principal eigenvalues 
([�

1
 + �

2
 + �

3
]/3). Figure 1 displays the diffusion tensor 

model under isotropic and anisotropic diffusion.
Three GQI metrics were also calculated—QA, GFA, and 

RDI.

Quantitative Anisotropy (QA). QA is defined as the amount 
of anisotropic spins that diffuse along a fiber orientation, and 
it is given mathematically by

where � is the spin distribution function (SDF) estimated 
using the generalized q-sampling imaging, â is the orienta-
tion of the fiber of interest, and iso(� ) is the isotropic back-
ground diffusion of the SDF. Z

0
 is a scaling constant that 

scales free water diffusion to 1 so that the QA value will 
mean the same thing across different participants (Yeh et al. 
2010).

Figure 2 shows that QA can be defined for each peak 
in the SDF. Since tractography follows individual peaks 
across a string of voxels, researchers typically have focused 
on the first peak ( QA

0
 ), and have additionally normalized 

QA = Z
0
(�(â) − iso(�))

Fig. 1   The diffusion tensor model is illustrated. Left illustrates iso-
tropic diffusion. Right illustrates anisotropic diffusion. � s represent 
the principal eigenvectors. �

1
 = longitudinal (axial) diffusivity; [ �

2
 + 

�
3
]/2 = radial diffusivity. [ �

1
 + �

2
 + �

3
]/3 = mean diffusivity

http://www.humanconnectome.org
https://research.cchmc.org/c-mind/
https://research.cchmc.org/c-mind/
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the QA
0
 metric so that it can be compared across different 

participants. This normalized QA metric, nQA, is calculated 
according to the generalized q-sampling imaging method 
from Yeh et al. (2010).

Generalized fractional anisotropy (GFA). Generalized frac-
tional anisotropy (GFA) represents an alternative indirect 
metric of white matter integrity that can be computed from 
a HARDI diffusion acquisition. It can be thought of as a 
higher-order generalization of FA (Descoteaux et al. 2007). 
The GFA metric thus begins with the ODF, and proceeds 
to rescale it by subtracting off the baseline term. Rescaling 
the ODF introduces a confound such that noise in the data, 
which rescales non-linearly, can appear to be anisotropic 
when in fact that is not the case. The GFA corrects for this 
by rescaling the min–max normalized ODF with an anisot-
ropy measure. From Tuch (2004), the GFA metric follows 
the same logic as the FA calculation. Thus,

where � are the eigenvalues of the diffusion tensor.
GFA is then given by

where (�) = (
1

n
) =

∑n

i=1
�(ui) = (

1

n
) is the mean of the ODF. 

The output of this transformation is a scalar measure, GFA, 
which functions in a similar manner as FA to describe the 
anisotropic direction of water diffusion in the voxel. Like the 
traditional FA metric from DTI, the values range from 0 to 1.

Neurite orientation dispersion and density imaging 
(NODDI) metrics. NODDI works by combining the three-
component tissue model, which distinguishes between 

(1)FA =
std(�)

rms(�)

(2)GFA(�) =

�
std(�)

rms(�)
=

n
∑n

i=1
(�(ui) − (�))2

(n − 1)
∑n

i=1
�(ui)

2

intracellular, extracellular, and cerebrospinal fluid, with the 
2-shell HARDI protocol:

This calculates the independent, normalized signal A, com-
prised of the intracellular normalized signal and volume 
fraction ( Vic and Aic ), the normalized signal of the extra-
cellular compartment ( Aec ), and the normalized signal and 
and volume fraction of the cerebrospinal fluid ( Viso and Aiso ) 
(Zhang et al. 2012). The three tissue components are calcu-
lated from a simplified form of the orientation-dispersed cyl-
inder model (Zhang et al. 2011) and the Watson distribution. 
Using the Watson distribution provides a unique advantage 
due to its capability of accurately estimating both low and 
high levels of dispersion across the brain, while truncated 
spherical harmonic series tend to provide inexact measure-
ments of lower levels of orientation dispersion (Jespersen 
et al. 2007; Zhang et al. 2012).

NODDI supports the modeling of both gray and white 
matter, with white matter showing low to moderate axonal 
dispersion and gray matter showing high axonal dispersion. 
Since its implementation, NODDI has been used in numer-
ous adult studies to examine disease progression (Taoka 
2020; Broad 2019), and it appears to be useful for differen-
tiating between myelinated and non-myelinated axons (Kunz 
2014) and measuring cortical gray matter maturation over 
development (Pecheva 2018).

The three NODDI metrics we examined were intracel-
lular volume fraction (ICVF), isotropic volume fraction 
(ISOVF), and orientation dispersion (OD). ICVF measures 
neurite density, with higher values indicating greater pack-
ing of neuronal tissue. ISOVF measures the extracellular, 
free water compartment of the model. OD measures disper-
sion of modeled sticks, with greater dispersion seen in gray 
matter and lower dispersion in white matter regions such as 
the corpus callosum.

Restricted diffusion imaging (RDI). Restricted diffusion 
imaging (RDI) is a novel metric that aims to measure 
changes in cellular density. Thus far, it has been shown to 
be sensitive to the inflammatory response (macrophage infil-
tration) in rats (Yeh et al. 2017). It is for this reason that we 
expect it might be sensitive to differences in axonal density.

RDI works through the use of q-ball imaging that esti-
mates the density of diffusing spins with respect to their 
diffusion displacement. RDI separates non-restricted diffu-
sion from restricted diffusion through the use of different 
diffusion sensitization strengths, which allows RDI to be 
more sensitive to structural changes. The calculation for the 
metric is a linear combination of diffusion-weighted imaging 
signals acquired by the long diffusion time (Yeh et al. 2017):

(3)A = (1 − Viso)(VicAic + (1 − Vic)Aec) + VisoAiso

Fig. 2   The spin distribution function (SDF) is illustrated. Each peak 
in QA determines a diffusion direction, with QA

0
 representing the 

primary direction, QA
1
 representing the secondary direction, and QA

2
 

representing the tertiary direction
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In the formula, rho (L) represents the density of diffusing 
spins that are restricted with the displacement distance L. 
Si is a sine integral, Si(x) = ∫ x

0

sin(t)

t
dt . In the case where 

q = 0, the term Si(2�L|�|)∕2 �|�| would be replaced by 
L. Overall restricted diffusion, �(L), estimates the density 
of diffusing spins with diffusion displacements less than L 
(Yeh et al. 2017).

DWI reconstruction. The DTI (Basser et al. 1994) and GQI 
(Yeh et al. 2010) reconstruction were both accomplished 
using the June 2021 version of DSIStudio (http://​dsi-​studio.​
labso​lver.​org) and took approximately 1 min for DTI and 
2 min for GQI. NODDI reconstruction took considerably 
longer, at about 4–6 h per brain. The NODDI reconstruction 
conducted here used the AMICO (Daducci 2015) python 
implementation, along with the DIPY library (Garyfallidis 
2014), SPArse Modeling Software (SPAMS) (Mairal et al. 
2010) (http://​spams-​devel.​gforge.​inria.​fr/), and the Camino 
toolkit as dependencies (Cook et al. 2006). Tensor fit was 
limited to b-values of 1000 s/mm2 for DTI analyses in Study 
1 to reduce sampling from non-Gaussian diffusion (Veraart 
and Sijbers 2016). A comparison with the multi-shell DTI 
reconstruction is provided in Supplemental Fig. 1. RDI indi-
ces were calculated alongside GQI reconstruction. For the 
HCP adult data set, gradient nonlinearity correction was 
applied within DSIStudio using exponential signal decay 
approximation for diffusion tensor models and a voxelwise 
3 × 3 gradient deviation matrix for higher order models (Yeh 
and Verstynen 2016). This correction was not possible for 
the C-MIND data set because we did not have access to 
the proprietary MRI vendor-specific text file containing the 
spherical harmonics expansion representing the gradient 
coils.

Study 1

Participants

The adult sample contained 842 participants between the 
ages of 22 and 35 years who underwent MRI scans as part 
of the Human Connectome Project. Data were provided by 
the Human Connectome Project, WU-Minn Consortium 
(Principal Investigators: David Van Essen and Kamil Ugur-
bil; 1U54MH091657) funded by the 16 NIH Institutes and 
Centers that support the NIH Blueprint for Neuroscience 
Research; and by the McDonnell Center for Systems Neu-
roscience at Washington University. MRI acquisition and 
processing of the HCP are detailed in Sotiropoulos (2013). 
The automated atlas segmentation was successfully applied 

(4)p(L) =
∑

q

Si(2�L|�|)
2�|�|

W(�)
to 840 of these participants. Therefore, the summary sta-
tistics for the DTI and GQI metrics were calculated on 
840 participants. The NODDI reconstruction is a time and 
resource intensive process, and thus a random sample of 
100 participants were selected from the full sample for this 
reconstruction. Data use was reviewed and approved by the 
Florida International University Institutional Review Board.

Parcellating the corpus callosum: drawing 
the Regions of Interest (ROIs)

The corpus callosum was manually segmented into 10 ROIs 
in DSI Studio, following the segmentation scheme described 
by Aboitiz et  al. (1992). These divisions are shown in 
Fig. 3A, reconstructed from the original Aboitiz et al. (1992) 
segmentation. To conduct the segmentation, we first drew 
the midline slice from the coronal view, and then we drew 
the ROIs from the sagittal view. We then measured the 
corpus callosum divided it into three equal length sections 
going from the anterior to posterior direction: the genu, the 
midbody, and the isthmus/splenium. We then further divided 
the genu and the midbody sections into three equal parts. 
Thus, the genu was divided into G1, G2, and G3, while the 
midbody was divided into B1, B2, and B3.

Finally, we defined the last third of the corpus callosum 
as the isthmus and the splenium. The splenium makes up 
the posterior fifth of the entire corpus callosum and is sub-
divided into three equal sections, labeled S1, S2, and S3. 
The isthmus, labeled I, is comprised of the remaining area 
between the midbody and the splenium sections. All sec-
tions of the corpus callosum are arbitrarily divided based 
on straight length by counting voxels between the parcels. 
Clarke (1990) showed that whether these sections are por-
tioned based on curvature or straight length makes no dif-
ference. For this adult sample, the 10 ROIs were saved as an 
atlas which was then applied to all participants.

Data analysis

In the original Aboitiz et al. (1992) paper, the authors used 
this segmentation to report on densities, based on histologi-
cal counts, of the following fiber sizes: >0.4 μm, >1 μm, >3 
μm, and >5.0 μm. The pattern of fiber densities was nearly 
identical for the >3 μm B and >5.0 μm, and thus for sim-
plicity we ignored that pattern for this paper (i.e., the >5.0 
μm results would apply in the same way to the >3.0 μm pat-
tern). To determine which of the density patterns produced 
by our two samples best replicated the Aboitiz histological 
model, we conducted planned contrast analyses (Rosenthal 
et al. 2000). Planned contrasts allow a test of whether the 
observed pattern matches an expected pattern, which in this 
case is defined by the histologic results.

http://dsi-studio.labsolver.org
http://dsi-studio.labsolver.org
http://spams-devel.gforge.inria.fr/
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The patterns we modeled are given in Fig. 3. Figure 3A 
shows the segmentation scheme used in the Aboitiz et al. 
(1992) paper, which we replicated here. This scheme was 
also used by Genc et al. (2018). Figure 3B shows density 
results from Aboitiz et al. (1992) for three fiber sizes: >5.0 
μm, >1 μm, and >0.4 μm.

The first step in a planned contrast analysis is to establish 
the contrast weights. These weights are designed to model 

the pattern of the Aboitiz data for the four comparisons on 
which they reported (again, note that results for >3 μm are 
omitted). Figure 3B shows the contrast weights for each of 
four comparisons that were reported as significant in the 
Aboitiz paper. For >5.0 μm the contrast weights were: 
(–5.5, –3.5, –1.5, 0.5, 2.5, 4.5, 2.5, 0.5, –0.5, 0.5). For >1 
μm, Aboitiz only found significant differences between B3 
and S2 segments and S2 and S3 segments. Therefore, we 

Fig. 3   A Corpus callosum 
segmentation scheme from 
the Aboitiz et al. (1992) paper 
which we replicated for the cur-
rent studies. B Density results 
from Aboitiz et al. (1992) for 
three fiber sizes: >5.0 μm, >1 
μm, and >0.4 μm, along with 
the associated contrast weights 
we applied
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created two contrasts to test those specific differences: >1 
μm A: (0, 0, 0, 0, 0, –1, 0, 0, 1, 0); >1 μm B: (0, 0, 0, 0, 0, 
0, 0, 0, 1, –1). Finally, for >0.4 μm, the weights were: (1, 
0.5, 0.5, 0, –0.5, –1.5, –0.5, 0, 0.5, 0). As is standard, all 
contrast weights sum to zero. Once contrast weights were 
established, the second step was to test them in the context 
of the linear model, which was done using R v3.6 (R Core 
Team 2019).

Outlier detection and correction

We did not remove outliers but corrected for their influ-
ence using a conservative 97.5% Winsorization procedure. 
Similar to clipping in signal processing, this statistical trans-
formation limits extreme values to reduce the influence of 
outliers.

Results

Given the large sample size, even small effects are likely to 
be statistically significant. Therefore, our reporting of results 
focuses on effect sizes, which are independent of sample 
size. However, in organizing the discussion of results it is 
useful to establish a cutoff on which to base the reporting of 
the most important results. We established an arbitrary cut-
off of > |2.5| standard deviations to organize the discussion 
of the results. We still report all results in the tables, regard-
less of the cutoff values. We also conducted permutation-
based significance tests (5000 iterations) to establish what 
is the minimum statistically significant difference in effect 
sizes at � = .05. This critical difference was 0.35.

As Table 2 and Figs. 4 and 5 show, based on this cut-
off, several measures were sensitive to the longitudinal 

Table 1   This summary table 
provides a breakdown of the 
metrics that were analyzed for 
each study

Given the long computation time, a random sample of 100 out of 840 were chosen for NODDI analyses in 
Study 1
Furthermore, NODDI is only available for multi-shell acquisitions, so it could not be applied to the single-
shell data in Study 2

Metrics n Measure

Study 1: HCP adults
Multi-shell data, b values = 1000, 2000, 3000 s/mm2 90 directions per shell
DTI metrics

840 Radial diffusivity (RD)
840 Axial diffusivity (AD)
840 Mean diffusivity (MD)
840 Fractional anisotropy (FA)

GQI metrics
840 Generalized fractional anisotropy (GFA)
840 Normalized quantitative anisotropy (NQA)

NODDI metrics
100 Intracellular volume fraction (ICVF)
100 Isotropic volume fraction (ISOVF)
100 Orientation dispersion (OD)

RDI metric
840 Restricted diffusion imaging (RDI)

Study 2: C-MIND children and adolescents
Single-shell data, b value = 3000 s/mm2 , 61 directions
DTI metrics

129 Radial diffusivity (RD)
129 Axial diffusivity (AD)
129 Mean diffusivity (MD)
129 Fractional anisotropy (FA)

GQI metrics
129 Generalized fractional anisotropy (GFA)
129 Normalized quantitative anisotropy (NQA)

RDI metric
129 Restricted diffusion imaging (RDI)
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distribution of fiber sizes in the corpus callosum. From the 
DTI metrics, FA had an effect size above 2.5 for the >1 μm 
A fiber pattern. From the GQI metrics, GFA was the most 
sensitive to the contrast >1 μm A.

As expected, the most accurate NODDI metric was ICVF, 
which reflected density patterns at the smallest fiber size (t 
= 25.54, p <0.001) and at the largest fiber size (t = -24.66, 

p <0.001). The NODDI density patterns seen in this adult 
sample replicate the patterns reported by Genc et al. (2018) 
in a developing sample. Across both studies, ICVF was the 
lowest at the isthmus and the highest at the posterior part 
of the splenium. Similarly, the novel metric reported here, 
RDI, accurately replicated the density pattern for the > 5 
μm fiber sizes (t = 58.24, p <0.001), and for the smallest, 

Fig. 4   Anterior to posterior corpus callosum density patterns for the 
adult sample are plotted for each metric and grouped by reconstruc-
tion method. The density patterns acquired in the in vivo DWI acqui-

sitions are being compared to the Aboitiz (1992) histological patterns, 
shown on the right
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> 0.4 μm fiber sizes (t = -53.29, p <0.001). These findings 
indicate that both RDI and NODDI are capable of accurately 
measuring axonal density for large and small fiber sizes. At 

> 0.4 and 5 μm fiber sizes NODDI was statistically better 
than RDI, which was itself statistically better than all other 
metrics.

Table 2   Contrast analyses 
for corpus callosum density 
patterns in the adult sample

DTI tensor fit was restricted to b=1000 s/mm2 . Effect size reflects absolute value. p<0.05*, p < 0.01**, p 
< 0.001***

Metric n T-value Cohen’s d p value

> 0.4 μm Fiber size
Fractional anisotropy (FA) 840 21.01 1.03 < 0.001***
Radial diffusivity (RD) 840 − 9.54 0.47 < 0.001***
Axial diffusivity (AD) 840 6.51 0.32 < 0.001***
Mean diffusivity (MD) 840 − 15.66 0.76 < 0.001***
Generalized fractional anisotropy (GFA) 840 7.18 0.35 < 0.001***
Normalized quantitative anisotropy (NQA) 840 − 19.92 0.97 < 0.001***
Intracellular volume fraction (ICVF) 100 25.54 3.61 < 0.001***
Isotropic volume fraction (ISOVF) 100 − 4.56 0.65 < 0.001***
Orientation dispersion (OD) 100 − 0.06 0.01 0.95
Restricted diffusion imaging (RDI) 840 − 53.29 2.60 < 0.001***
> 1 μm (A) Fiber size comparing B3 and S2
Fractional anisotropy (FA) 840 64.32 3.14 < 0.001***
Radial diffusivity (RD) 840 − 16.23 0.79 < 0.001***
Axial diffusivity (AD) 840 36.94 1.80 < 0.001***
Mean diffusivity (MD) 840 − 39.95 1.95 < 0.001***
Generalized fractional anisotropy (GFA) 840 52.42 2.56 < 0.001***
Normalized quantitative anisotropy (NQA) 840 32.28 1.58 < 0.001***
Intracellular volume fraction (ICVF) 100 17.35 2.45 < 0.001***
Isotropic volume fraction (ISOVF) 100 − 7.71 1.09 < 0.001***
Orientation dispersion (OD) 100 − 7.28 1.03 < 0.001***
Restricted diffusion imaging (RDI) 840 − 22.92 1.12 < 0.001***
> 1 μm (B) Fiber size comparing S2 and S3
Fractional anisotropy (FA) 840 19.48 0.95 < 0.001***
Radial diffusivity (RD) 840 − 4.22 0.21 < 0.001***
Axial diffusivity (AD) 840 10.51 0.51 < 0.001***
Mean diffusivity (MD) 840 − 9.99 0.49 < 0.001***
Generalized fractional anisotropy (GFA) 840 22.85 1.12 < 0.001***
Normalized quantitative anisotropy (NQA) 840 5.30 0.26 < 0.001***
Intracellular volume fraction (ICVF) 100 − 6.28 0.89 < 0.001***
Isotropic volume fraction (ISOVF) 100 − 9.73 1.38 < 0.001***
Orientation dispersion (OD) 100 − 12.09 1.71 < 0.001***
Restricted diffusion imaging (RDI) 840 − 6.02 0.29 < 0.001***
> 5 μm Fiber size
Fractional anisotropy (FA) 840 − 5.29 0.26 < 0.001***
Radial diffusivity (RD) 840 7.29 0.36 < 0.001***
Axial diffusivity (AD) 840 5.81 0.28 < 0.001***
Mean diffusivity (MD) 840 6.54 0.32 < 0.001***
Generalized fractional anisotropy (GFA) 840 7.83 0.38 < 0.001***
Normalized quantitative anisotropy (NQA) 840 35.17 1.72 < 0.001***
Intracellular volume fraction (ICVF) 100 − 24.66 3.49 < 0.001***
Isotropic volume fraction (ISOVF) 100 3.14 0.44 < 0.001***
Orientation dispersion (OD) 100 − 1.21 0.17 0.23
Restricted diffusion imaging (RDI) 840 58.24 2.84 < 0.001***
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Study 2

In Study 2, we aimed replicate the results from Study 1 in a 
developing sample. The same DTI and GQI diffusion met-
rics and histological model were used, but with a manually-
drawn corpus callosum segmentation for each participant as 
previously detailed. NODDI metrics were not able to be cal-
culated on this sample due to NODDI’s multi-shell require-
ment, not met by this sample’s single-shell MRI data. Note 
that Genc and colleagues (Genc et al. 2018) did examine 
NODDI metrics using a second acquisition in the C-MIND 
data set, which had different acquisition parameters and a 
different shell. We focused on the single-shell acquisition, as 
we were interested in determining whether RDI can provide 
accurate results with one shell acquisition. However, because 
we used the same segmentation approach as they did, we can 
compare our findings to theirs in a partial replication.

Participants

The developing sample contained 129 participants between 
the ages of 7 months and 19 years (M = 8.8 years) from the 
Cincinnati MR Imaging of NeuroDevelopment (C-MIND) 
database, provided by the Pediatric Functional Neuroimag-
ing Research Network (https://​resea​rch.​cchmc.​org/c-​mind/) 
and supported by a contract from the Eunice Kennedy 
Shriver National Institute of Child Health and Human Devel-
opment (HHSN275200900018C). The data are available 
from C-MIND by request, which facilitates validation of the 
results we report here. The C-MIND data were single-shell, 
61 direction HARDI scans which were acquired using a spin-
echo, EPI method with intravoxel incoherent motion imag-
ing (IVIM) gradients for diffusion weighting of the scans. 

They were acquired using a 32-channel head coil (SENSE 
factor of 3), which obtained 2 × 2 × 2 mm spatial resolution 
at b = 3,000 (EPI factor = 38, 1,752.6 Hz EPI bandwidth, 2 
× 2.05 × 2 acquisition voxel; 2 × 2 × 2 reconstructed voxel; 
112 × 109 acquisition matrix). The scan took under 12 min, 
with an average scan time of 11 min and 34 s. Seven b = 0 
images were also acquired at intervals of eight images apart 
in the diffusion direction vector. Participants in the database 
are full-term gestation, healthy, right-handed, native English 
speakers, without contraindication to MRI. By design, the 
C-MIND cohort is demographically diverse (38% nonwhite, 
55% female, median household income $42,500), intended 
to reflect the US population. The summary statistics for the 
DTI and GQI metrics were calculated for the full sample of 
129 participants. Data use was reviewed and approved by the 
Florida International University Institutional Review Board.

Parcellating the corpus callosum

Due to previous studies indicating problems with applying 
the MNI normalization to a developing sample, we manually 
drew the 10 ROIs for the Study 2 sample, following the same 
guidelines as were used in Study 1. The same data analysis 
procedure was followed as in Study 1. As in Study 1, we 
also conducted permutation-based significance tests (5000 
iterations) to establish what is the minimum statistically sig-
nificant difference in effect sizes at � = 0.05. For the child 
sample, this critical difference was also 0.35.

Results

The results from the C-MIND developing sample were gen-
erally consistent with those we reported in Study 1, summa-
rized in Table 3. FA was the most effective DTI metric for 
3 out of 4 models. It was positively related to smaller fiber 
sizes (t = 28.66, p <0.001 for > 0.4 μm, t = 23.88, p <0.001 
for > 1 μm model A) and was inversely related to the largest 
> 5 μm density model (t = -27.46, p <0.001).

For the GQI metrics, GFA continued to be a reliable 
measure of fiber density for all four models. RDI was also 
consistent for both the smallest and highest fiber size mod-
els. In fact, RDI most closely matched the histological model 
for fiber sizes greater than 5 μm (t = 30.36, p <0.001), and 
was statistically better than all other metrics as indicated by 
Figs. 6 and 7.

Discussion

The quantification of microstructural properties of neu-
ral tissue can be informed by advances in the modeling of 
diffusion-weighted imaging data. This is important for the 
diagnosis and treatment of neurologic disease, especially 

Fig. 5   The effect size of each diffusion metric predicting the Aboitiz 
model in the adult sample, based on fiber size. Absolute value for 
effect size is displayed. Fiber sizes above 1 μm compared the differ-
ences in B3 and S2 for model A, and differences between fiber sizes 
greater than 1 μm in S2 and S3 for model B

https://research.cchmc.org/c-mind/
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as it relates to properties of white matter such as axon den-
sity. In this study, we examined two separate samples of 
typical adults and children. In the first sample of 840 adults 
from the HCP dataset, we segmented the corpus callosum 
into 10 parts, and measured the diffusion properties of each 
segment. These diffusion properties were modeled using a 
variety of reconstruction methods based on DTI, NODDI, 
and GQI models. For large fiber sizes (> 5 μm), we found 
that the best indicators of histologically established axonal 
density patterns were the NODDI ICVF and RDI metrics. 
For mid-range fiber sizes (> 1 μm), there were no methods 
that were clear standouts. For the smallest fiber sizes (> 0.4 
μm), the same metrics that were sensitive to large fiber sizes 
(NODDI ICVF and RDI) showed the clearest differentiation.

For the developing sample of 129 children and adoles-
cents, we generally found the same results as in the adult 
sample, but with the addition of FA and GFA, which also 
displayed sensitivity to axonal density in 3 out of 4 models. 
As in the adult sample, the RDI metric clearly matched the 
known histologic pattern of the corpus callosum, especially 
for small and large fiber sizes, and indeed seemed to be sen-
sitive to subtle differences across the longitudinal length of 

the structure. These results suggest it is possible to quantify, 
indirectly, differences in axonal density in vivo using DWI 
in both children and adults.

Furthermore, there is clear support that RDI is a use-
ful metric of fiber density in both adults and children, and 
in single- and multi-shell acquisition paradigms. Although 
multi-shell acquisition is suggested (Yeh et al. 2017), RDI 
has been used with standard diffusion protocols typical of 
clinical magnets available at most hospitals and outpatient 
clinics. For example, Sammartino et  al. (2019) showed 
that RDI was sensitive to lesions after focused ultrasound 
thalamotomy with just one b value (b = 1000 s/mm2 ). Our 
results indicate that one b value appears to be sufficient for 
sensitivity to axonal density in the corpus callosum. That 
is, the pattern of results obtained for the HCP and C-MIND 
samples are similar, and when the analysis of the HCP data 
is restricted to a single b-value, the pattern is not appreciably 
different compared to the multi-shell reconstruction (see 
Supplemental Fig. 2). This information has the potential to 
inform researchers and clinicians about microstructural dif-
ferences in a variety of domains, for example in the exami-
nation of disease progression, of age-related changes across 

Fig. 6   Corpus callosum density patterns for the developing sample 
are plotted for each of the 7 metrics and grouped by reconstruction 
method. The density patterns acquired in the in  vivo DWI acquisi-

tions are being compared to the Aboitiz (1992) histological patterns, 
shown on the bottom right
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typical and atypical development, and of general nervous 
system structure/function relationships.

Comparison of restricted diffusion imaging (RDI) 
to other metrics in published literature

Our study can be conceived of as a complement to simi-
lar investigations conducted by Genc and colleagues (Genc 
et al. 2018) and by Raffelt and colleagues (Raffelt 2015, 
2012). These authors showed that other metrics sensitive to 
fiber density can reliably replicate the longitudinal pattern of 
axonal density in the corpus callosum. For example, Raffelt 
and colleagues (Raffelt 2015, 2012) established the appar-
ent fiber density (AFD) measure, which they showed can be 
biologically interpreted as a measure of the intra-axonal vol-
ume fraction of axons along the corresponding orientation. 
However, the metric is heavily affected by the space occu-
pied by axons, and not so much by axonal diameter. Thus, 
for example, fiber bundles consisting of large axons could 
have lower density than thinner axons, yet their AFD would 
be comparable. Despite this, Genc and colleagues (Genc 
et al. 2018) showed that AFD is sensitive to axonal density 
in larger fiber bundles (their Fig. 4), and indeed that metric 
best matched the histological pattern reported by Aboitiz. 
But Genc et al. did not assess whether it was similarly sensi-
tive for smaller fiber bundles.

In our complementary investigation, we showed that, 
for both large and small fiber sizes, in both adult and child 
samples, RDI was an excellent differentiator of the pattern 
of axonal density across the longitudinal axis of the corpus 

callosum (see Fig. 8 for comparison with large diameter 
fibers). Unlike most other diffusion metrics, RDI does not 
depend on an underlying diffusion model or numerical opti-
mization to estimate model parameters, making it easily 
applicable to a wider range of databases and clinical scanner 
protocols. RDI’s sensitivity to cell density has been useful 
in differentiating tissue in patients with tumors (Yeh 2019; 
D’Souza et al. 2019), as well as measuring therapeutic ben-
efits of deep brain stimulation (Anderson et al. 2019). In a 
phantom study by Yeh et al., the optimized restricted diffu-
sion showed an almost perfect correlation of 0.998 with cell 
density (Yeh et al. 2017). Notably, that paper also showed 
that mean diffusivity is associated with cell density. How-
ever, we did not corroborate that here with respect to axonal 
density. MD was not more effective than other DTI metrics 
at differentiating axonal density differences across the cor-
pus callosum in either sample. Compared to RDI, MD was 
not as good at differentiating axonal density in the small-
est or largest fiber sizes, in either children or adults. Thus, 
despite similar sensitivity to cellular density in a phantom 
study, RDI seems to be more sensitive than MD to fiber den-
sity in vivo. Furthermore, RDI was highly consistent across 
the two samples (see Fig. 8). This is in contrast to other com-
mon metrics like FA, which was not as consistently effective 
at differentiating fiber density across the two samples. These 
results suggest that RDI is a reliable measure of fiber density 
across a wide age range, and it is robust to different diffusion 
acquisitions. Furthermore, a main advantage of RDI is the 
computation time (under a minute) which occurs as part of 
routine image reconstruction, thus making it appealing in 
clinical settings.

Genc et al. (Genc et al. 2018) also showed that NODDI 
metrics were reasonably sensitive to the distribution of 
axon density in the corpus callosum. In our study, for large 
fiber sizes, NODDI ICVF was the best NODDI differen-
tiator of corpus callosum fiber density. In other research, 
this measure has also been shown to be effective at cap-
turing axonal density across the corpus callosum (Zhang 
et al. 2012; Genc et al. 2018). For example, previous stud-
ies have found that NODDI is more sensitive to demyelina-
tion than DTI metrics in both human (Grussu 2017) and 
mouse models (Sepehrband 2015). Thus, we are not making 
the claim that RDI is necessarily much more sensitive to 
fiber density. However, despite the sensitivity of NODDI, 
two issues limit its utility for clinical samples, especially 
for pediatric samples. One is the long reconstruction times 
(several hours per participant in our study), and the second 
is the requirement of multi-shell data acquisitions. Some 
software advances have improved reconstruction times for 
NODDI models (to around 1 h per participant using Micro-
structure Diffusion Toolbox (MDT; Harms et al. 2017), but 
RDI reconstruction times are still much shorter (around 1 
min per participant), and as we noted above, our data suggest 

Fig. 7   The effect size of each diffusion metric predicting the Aboitiz 
model in the developing sample, based on fiber size. Absolute value 
of effect size is displayed. Fiber sizes above 1 μm compared the dif-
ferences in B3 and S2 for model A, and differences between fiber 
sizes greater than 1 μm in S2 and S3 for model B
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that, for fiber density, RDI can provide accurate results even 
for single-shell acquisitions. This does not entirely discount 
the effectiveness of NODDI ICVF as a metric for assessing 
fiber density, but it does suggest that RDI is another useful 
addition to the diffusion toolkit, and that it has important 
clinical applicability.

RDI also outperformed DTI metrics. For our adult sam-
ple, our density patterns were similar to previous investiga-
tions, with an increase in FA seen in the posterior segments 
of the corpus callosum (Caminiti 2013; Bjornholm 2017) 
and a peak of MD in the isthmus (Bjornholm 2017), indicat-
ing that DTI metrics are sensitive to structural differences 
in the corpus callosum. But DTI metrics were inconsistent 
between the adult and child samples. Furthermore, despite 
being widely utilized as measures of microstructural change, 
DTI metrics lack specificity when it comes to measuring 

specific characteristics of microstructure (Daducci 2014). 
The inconsistencies we saw in our DTI metrics might have 
been caused by differences in axonal density, but they might 
also be associated with other tissue properties, such as lower 
myelination (Lebel and Deoni 2018; Reynolds et al. 2019), 
increased orientation dispersion (Jones et  al. 2013), or 
less mature axonal integrity within the developing sample 
(Kumar et al. 2012; Qiu et al. 2008). Due to the inherent 
nonspecific nature of DTI, it remains difficult to discern 
what caused the differences in quantification between sam-
ples, which highlights well-established drawbacks to DTI 
metrics.

Table 3   Contrast analyses 
for corpus callosum density 
patterns in the developing 
sample

Effect size reflects absolute value. p < 0.05*, p < 0.01**, p < 0.001***

Metric n T-value Cohen’s d p value

> 0.4 𝜇m Fiber size
Fractional anisotropy (FA) 129 28.66 3.57 < 0.001***
Radial diffusivity (RD) 129 − 21.23 2.64 < 0.001***
Axial diffusivity (AD) 129 − 0.10 0.01 0.92
Mean diffusivity (MD) 129 − 15.40 1.92 < 0.001***
Generalized fractional anisotropy (GFA) 129 27.86 3.47 < 0.001***
Normalized quantitative anisotropy (NQA) 129 4.88 0.61 < 0.001***
Restricted diffusion imaging (RDI) 129 − 24.79 3.09 < 0.001***
> 1 𝜇m (A) Fiber size comparing B3 and S2
Fractional anisotropy (FA) 129 23.88 2.97 <  0.001***
Radial diffusivity (RD) 129 − 15.29 1.90 < 0.001***
Axial diffusivity (AD) 129 3.67 0.46 < 0.001***
Mean diffusivity (MD) 129 − 9.71 1.21 < 0.001***
Generalized fractional anisotropy (GFA) 129 25.16 3.13 < 0.001***
Normalized quantitative anisotropy (NQA) 129 18.70 2.33 < 0.001***
Restricted diffusion imaging (RDI) 129 − 0.85 0.11 0.40
> 1 𝜇m (B) Fiber size comparing S2 and S3
Fractional anisotropy (FA) 129 1.15 0.22 0.08
Radial diffusivity (RD) 129 − 1.67 0.21 0.10
Axial diffusivity (AD) 129 − 0.02 0.003 0.98
Mean diffusivity (MD) 129 − 1.16 0.14 0.24
Generalized fractional anisotropy (GFA) 129 3.64 0.45 < 0.001***
Normalized quantitative anisotropy (NQA) 129 1.17 0.17 0.24
Restricted diffusion imaging (RDI) 129 -2.44 0.30 < 0.05*
> 5 𝜇m Fiber size
Fractional anisotropy (FA) 129 − 27.46 3.42 < 0.001***
Radial diffusivity (RD) 129 21.94 2.73 < 0.001***
Axial diffusivity (AD) 129 2.87 0.36 < 0.01**
Mean diffusivity (MD) 129 16.93 2.11 < 0.001***
Generalized fractional anisotropy (GFA) 129 − 25.55 3.18 < 0.001***
Normalized quantitative anisotropy (NQA) 129 1.04 0.13 0.30
Restricted diffusion imaging (RDI) 129 30.36 3.78 < 0.001***
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Limitations

The first limitation of this study is that there are other avail-
able diffusion-weighted imaging reconstruction algorithms 
than we studied here. We restricted our comparison to 
the novel RDI method and compared it to DTI, GQI, and 
NODDI techniques, but there are other algorithms, such as 
AFD (Raffelt 2012) and restriction spectrum imaging (RSI) 
(White et al. 2013), that could also be considered. Second, 
we included the C-MIND dataset to represent a develop-
ing sample collected under typical clinical scanning condi-
tions, but it is necessary to note that single-shell DWI scans 
acquired at b=3000 s/mm2 can bias diffusion tensor models. 
Previous work has indicated that DTI models may become 
increasingly problematic with b-values above 1500 s/mm2 
(Veraart and Sijbers 2016), and while we were able to restrict 
the b-value in the multi-shell HCP data to b=1000 s/mm2 , 
this option was not available for the C-MIND sample. Third, 
we were unable to correct for gradient non-linearities in the 
C-MIND data, as we did not have access to the proprietary 
MRI vendor-specific text file containing the spherical har-
monics expansion representing the gradient coils. Thus, cau-
tion is warranted when interpreting the DTI results for Study 
2. A final limitation of our study is that we only examined 
one brain region. The corpus callosum is a coherently ori-
entated structure with no crossing fibers. Our study does not 
address how accurate these metrics would be at measuring 

density when crossing fibers are present, which is a known 
drawback of DTI in particular, but might also affect more 
recently developed metrics such as NODDI and RDI. While 
our study provides strong evidence for the utility of NODDI 
and RDI for measuring axonal density, investigations of 
other brain regions would further expand these results and 
potentially elucidate different clinical applications.

Conclusions

The study provided novel evidence that RDI can be used 
to measure axonal density in children and adults, even for 
single-shell data. The histological model of corpus callo-
sum anterior–posterior density pattern was replicated using 
this novel in vivo metric across two independent samples. 
NODDI’s ICVF measure in adults, and GQI’s GFA metric in 
children, was also sensitive to axonal density. These encour-
aging findings support the hypothesis that higher order mod-
els like RDI, and also NODDI ICVF and GQI GFA, can 
be used for measurement of axonal density in clinical and 
non-clinical populations.

Establishing reliable and effective measures of axonal 
density is potentially significant for the study of early symp-
tomatology, progression, and possible underlying causes of 
disorders characterized by white matter and other neural 
pathologies, such as multiple sclerosis (Grussu 2017), amyo-
trophic lateral sclerosis (Broad 2019), dysplasia (Winston 

Fig. 8   The Aboitiz (1992) histological density model for large fiber 
sizes is shown above. The bottom plots illustrate the density patterns 
for the adult and child samples as measured by RDI. RDI accurately 

captures the peaks and troughs of histologically established axonal 
density patterns along the longitudinal axis of the corpus callosum
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2014), epilepsy (Winston 2014), and immune cell infiltra-
tion (Yeh et al. 2017). Many previous relationships between 
axonal density and clinical disorders were fully dependent 
on histology, but through the advancements of DWI, these 
disorders can be studied in vivo, which holds potential for 
making earlier diagnoses and may contribute to the design 
of more specific, directed treatment plans.
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